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ABSTRAK

Kondisi jalan yang baik merupakan faktor penting dalam memastikan keselamatan, kenyamanan,
dan aktivitas ekonomi masyarakat. Identifikasi kondisi jalan di lapangan masih sebagian besar di-
lakukan secara manual, sehingga membutuhkan waktu dan biaya yang besar. Penelitian ini bertujuan
untuk menerapkan serta membandingkan performa beberapa arsitektur Convolutional Neural Net-
work (CNN) dalam mengklasifikasikan kondisi jalan berdasarkan citra digital ke dalam empat kelas,
yaitu good, satisfactory, poor, dan very poor. Penelitian ini menggunakan lima arsitektur CNN,
yaitu InceptionV3, DenseNet201, VGG16, EfficientNetB0, dan ResNet50V2, dengan tiga optimiz-
er, yaitu Adam, SGD, dan RMSprop. Dataset yang digunakan berjumlah 2.074 data citra, yang
bersumber dari dataset publik Kaggle dan digunakan sebagai data pelatihan serta pengujian mod-
el. Eksperimen dilakukan melalui tiga skenario, meliputi tanpa augmentasi dan tanpa preprocessing
input, tanpa augmentasi dengan preprocessing input, serta dengan augmentasi dan preprocessing
input. Evaluasi performa model dilakukan menggunakan metrik akurasi, serta analisis confusion
matrix, classification report, dan kurva ROC–AUC. Hasil penelitian menunjukkan bahwa arsitektur
DenseNet201 dengan optimizer RMSprop dan preprocessing input mencapai performa terbaik de-
ngan tingkat akurasi sebesar 94,31%. Model terbaik selanjutnya diimplementasikan ke dalam sistem
berbasis web sebagai bentuk penerapan praktis. Penelitian ini menunjukkan bahwa metode CNN e-
fektif untuk klasifikasi kondisi jalan multikelas dan berpotensi untuk mendukung sistem pemantauan
infrastruktur jalan berbasis citra.
Kata Kunci: Convolutional Neural Network, deep learning, klasifikasi citra, kondisi jalan, transfer
learning
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CLASSIFICATION OF ROAD DAMAGE LEVELS BASED ON
DIGITAL IMAGES USING CONVOLUTIONAL NEURAL

NETWORK ALGORITHMS

RIFKA ANRAHVI
NIM: 12250321100

Date of Final Exam: January 07th 2026
Graduation Period:

Department of Information System
Faculty of Science and Technology

State Islamic University of Sultan Syarif Kasim Riau
Soebrantas Street, No. 155, Pekanbaru

ABSTRACT

Good road conditions are a critical factor in ensuring public safety, travel comfort, and economic
activities. The identification of road conditions in the field is still largely conducted manually,
resulting in significant time and cost requirements. This study aims to implement and compare
the performance of several Convolutional Neural Network (CNN) architectures in classifying
road conditions based on digital images into four classes, namely good, satisfactory, poor, and
very poor. This research employs five CNN architectures, namely InceptionV3, DenseNet201,
VGG16, EfficientNetB0, and ResNet50V2, using three optimization algorithms: Adam, SGD, and
RMSprop. The dataset consists of 2,074 image samples, sourced from the public Kaggle dataset
and used as training and testing data for the model. Experiments were conducted under three
scenarios: without data augmentation and without input preprocessing, without data augmentation
but with input preprocessing, and with both data augmentation and input preprocessing. Model
performance was evaluated using accuracy as the primary metric, along with confusion matrix
analysis, classification reports, and ROC–AUC curves. The experimental results indicate that the
DenseNet201 architecture with the RMSprop optimizer and input preprocessing achieved the best
performance, attaining an accuracy of 94.31%. The best-performing model was subsequently
implemented into a web-based system as a practical application. Overall, this study demonstrates
that CNN-based methods are effective for multi-class road condition classification and have strong
potential to support image-based road infrastructure monitoring systems.
Keywords: convolutional neural network, deep learning, image classification, road condition,
transfer learning
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BAB 1

PENDAHULUAN

1.1 Latar Belakang
Kehidupan sehari-hari masyarakat sangat bergantung pada infrastruktur,

khususnya jaringan jalan. Infrastruktur sangat penting bagi pertumbuhan sebuah ne-
gara karena berperan sebagai dasar yang mendukung kelancaran berbagai kegiatan
ekonomi dan sosial serta meningkatkan mobilitas (Swain dan Tripathy, 2024). Kon-
disi jalan yang baik sangat penting untuk pertumbuhan ekonomi dan peningkatan
konektivitas antar wilayah. Namun, kerusakan seperti retakan dan lubang yang
disebabkan oleh cuaca ekstrem, beban kendaraan yang berlebihan, dan kurangnya
pemeliharaan sering menyebabkan gangguan distribusi logistik dan meningkatkan
risiko kecelakaan. Pemeliharaan jalan di banyak kota sulit, terutama saat kerusakan
meningkat sementara sumber daya dan dana terbatas (Chu dkk., 2023).

Di Indonesia, khususnya di Provinsi Riau, kerusakan jalan telah menjadi isu
serius. Menurut BPK RI Perwakilan Provinsi Riau (2024) ratusan kilometer jalan
di Pekanbaru mengalami kerusakan parah, berdampak pada kenyamanan dan ke-
selamatan pengguna jalan serta mengganggu aktivitas ekonomi, khususnya Usaha
Mikro, Kecil, dan Menengah (UMKM) dan distribusi logistik (BPK RI Perwakilan
Provinsi Riau, 2024; Julianta dan Putrie, 2025). Merespons hal tersebut, Pemerintah
Kota Pekanbaru telah memulai proses lelang untuk memperbaiki jalan yang rusak
di beberapa kecamatan. Dalam upaya untuk meningkatkan infrastruktur lokal, pros-
es ini direncanakan dimulai pertengahan Juli 2025. Namun, langkah ini belum bisa
mencakup semua jalan sekaligus karena terbatasnya dana dan kemampuan peme-
rintah daerah (Pemerintah Kota Pekanbaru, 2025).

Di sisi lain, pemantauan kondisi jalan masih dilakukan secara manual, yang
memerlukan waktu, tenaga, dan biaya besar, ini tidak sebanding dengan keter-
batasan sumber daya daerah (Sari, Astor, Awaludin, dan Shalabuddin, 2025). Kon-
disi ini menunjukkan bahwa diperlukan metode pemantauan kondisi jalan yang lebi-
h cepat, efisien, dan mampu menjangkau area yang lebih luas tanpa tergantung pada
inspeksi manual di lapangan. Untuk memastikan proses deteksi kerusakan berlang-
sung secara konsisten dan secara real-time, diperlukan pendekatan yang otomatis
(Ranyal, Sadhu, dan Jain, 2022). Menggunakan gambar digital menjadi salah sat-
u pilihan yang mudah diperoleh dan dapat merepresentasikan kondisi permukaan
jalan secara gambaran visual (Guo, Tian, Li, dan Sui, 2024). Namun, karena jumlah
data yang besar dan variasi bentuk kerusakan yang kompleks, analisis citra mem-
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butuhkan metode komputasi yang dapat mengenali pola visual secara otomatis dan
akurat (W. Wang dkk., 2025). Variasi kerusakan jalan, terutama pada tingkat me-
nengah, sering memiliki perbedaan visual yang halus. Hal ini menyulitkan proses
mengenali kerusakan tersebut jika dilakukan secara manual atau cara tradisional
(Jonathan Estilong, 2025). Karena itu, pendekatan berbasis pola visual yang men-
dalam justru semakin penting (Chai, Zeng, Li, dan Ngai, 2021).

Seiring kemajuan teknologi, pendekatan deep learning khususnya Convolu-
tional Neural Network (CNN), semakin diandalkan dalam menganalisis citra digital
untuk mendeteksi kerusakan jalan secara cepat dan presisi. Selain memungkinkan
pelatihan end-to-end, CNN memiliki performa yang lebih baik dibandingkan de-
ngan metode konvensional dan metode machine learning lainnya (D. R. Chen dan
Chiu, 2023; Jakubec, Lieskovská, Bučko, dan Zábovská, 2023). CNN dapat di-
gunakan untuk mendeteksi kerusakan jalan seperti lubang, terutama di genangan
air yang tertutup. Kekurangan sumber daya manusia membuat pendekatan otomatis
berbasis CNN dapat membantu deteksi dini (Chun dan Ryu, 2019; Denaro dan Lim,
2025)

Berbagai studi sebelumnya telah menunjukkan efektivitas CNN dalam klasi-
fikasi kerusakan jalan dengan hasil yang menjanjikan. Menurut penelitian Arafin,
Billah, dan Issa (2024) model InceptionV3 dengan optimizer SGD memiliki akurasi
91% dalam klasifikasi cacat beton, sedangkan Adam lebih optimal untuk segmen-
tasi retakan Arafin dkk. (2024). Matarneh, Elghaish, Pour Rahimian, Abdellate-
f, dan Abrishami (2024) mengevaluasi berbagai arsitektur CNN dan menemukan
bahwa DenseNet201 menunjukkan performa klasifikasi yang sangat baik, dengan
nilai F1-score sebesar 98,73% serta tingkat akurasi yang tinggi (Matarneh dkk.,
2024). Selanjutnya Swain dan Tripathy (2024), menunjukkan bahwa penerapan C-
NN berbasis VGG-16 mampu mencapai akurasi hingga 97,3%, dan meningkat hing-
ga 99,23% dengan pendekatan transfer learning pada deteksi lubang jalan (Swain
dan Tripathy, 2024). Sementara itu, Chaudhary dan Verma (2024) mengusulkan
penggunaan EfficientNet-B0 sebagai arsitektur CNN yang ringan dan efisien, yang
mampu mencapai tingkat akurasi di atas 96% dalam klasifikasi permukaan jalan, se-
hingga berpotensi untuk diterapkan pada sistem berbasis aplikasi dengan kebutuhan
komputasi yang lebih rendah (Chaudhary dan Verma, 2024).

Banyak penelitian sebelumnya telah menunjukkan keefektifan CNN dalam
mendeteksi kerusakan jalan, namun sebagian penelitian hanya membahas beberapa
jenis kerusakan tertentu, seperti crack dan spalling (Arafin dkk., 2024), tiga jenis re-
tak (Matarneh dkk., 2024), atau lubang jalan (Swain dan Tripathy, 2024). Selain itu
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beberapa studi hanya memakai satu arsitektur CNN, sehingga perbandingan mod-
el kurang komprehensif (Chaudhary dan Verma, 2024; Swain dan Tripathy, 2024).
Beberapa dataset yang digunakan tidak mencerminkan kondisi umum permukaan
jalan karena berasal dari lingkungan terkontrol atau berfokus pada material tertentu
seperti beton (Arafin dkk., 2024).

Meskipun demikian, variasi tingkat kerusakan jalan di dunia nyata tetap
memerlukan penilaian yang lebih mendalam agar lembaga terkait dapat mengambil
keputusan yang lebih baik. Selain temuan dalam literatur, kondisi nyata di lapangan
juga memperlihatkan kendala serupa. Wawancara dengan Dinas Pekerjaan Umum
dan Perumahan Rakyat (PUPR) Pekanbaru menunjukkan bahwa evaluasi kondisi
jalan di lapangan masih mengalami hambatan karena faktor cuaca, pencahayaan,
dan perbedaan karakteristik kerusakan di setiap lokasi. Meskipun kerusakan dapat
diamati secara langsung, penyelarasan penilaian antar lokasi masih menjadi tanta-
ngan. Penelitian ini dilaksanakan setelah peneliti memperoleh izin penelitian dar-
i instansi terkait, yaitu Dinas PUPR. Surat izin penelitian tersebut disajikan pada
Lampiran A.

Berdasarkan permasalahan tersebut, penelitian ini berfokus pada klasifikasi
tingkat kerusakan jalan menggunakan gambar digital ke dalam empat kategori, yaitu
good, satisfactory, poor, dan very poor. Untuk mendapatkan model dengan perfor-
ma terbaik, penelitian ini juga membandingkan lima arsitektur CNN yang telah
terbukti efektif pada penelitian sebelumnya yaitu InceptionV3, DenseNet201, VG-
G16, EfficientNetB0, ResNet50V2. Setiap model diuji dengan tiga jenis optimizer
(Adam, SGD, dan RMSprop) untuk menemukan kombinasi yang paling optimal.
Pendekatan ini diharapkan dapat berkontribusi pada identifikasi digital kondisi jalan
dan berfungsi sebagai acuan awal bagi lembaga terkait dalam pengambilan keputu-
san.

1.2 Perumusan Masalah
Berdasarkan latar belakang yang telah dipaparkan, rumusan masalah dalam

penelitian ini adalah bagaimana performa lima arsitektur CNN, yaitu InceptionV3,
DenseNet201, VGG16, EfficientNetB0, ResNet50V2 dalam mengklasifikasikan
kondisi jalan berdasarkan citra digital ke dalam kategori good, satisfactory, poor,
dan very poor, serta arsitektur mana yang menghasilkan performa terbaik ber-
dasarkan metrik evaluasi seperti akurasi, precision, recall, F1-score, dan confusion
matrix.

3



1.3 Batasan Masalah
Dalam melakukan penelitian, penting untuk menetapkan batasan-batasan

masalah agar tetap terfokus pada rencana yang telah ditetapkan. Oleh karena itu,
batasan masalah pada penelitian ini yaitu:

1. Penelitian ini menggunakan lima arsitektur CNN yaitu InceptionV3,
DenseNet201, VGG16, EfficientNetB0, ResNet50V2 serta menggunakan
optimizer Adam, SGD dan RMSprop. Perbandingan antar arsitektur di-
lakukan dari segi performa klasifikasi citra kondisi jalan.

2. Proses pelatihan model dilakukan dengan metode Hold-Out dalam per-
bandingan 80:20. Teknik augmentasi data digunakan, yaitu rotasi acak hing-
ga 30 derajat, shear hingga 15%, zoom hingga 15%, serta flipping untuk
meningkatkan variasi dan keberagaman data pelatihan.

3. Evaluasi dari model menggunakan confusion matrix yang terdiri dari accu-
racy, precision, recall, dan F-1 score serta ROC, sebagai dasar perbandingan
performa antar model.

4. Dataset yang digunakan dalam penelitian ini berasal dari dataset ter-
buka Kaggle dengan nama Road Damage Classification and Assess-
ment, dengan jumlah sebanyak 2.074 data citra, yang terdiri dar-
i empat kategori tingkat kerusakan jalan, yaitu good, satisfactory,
poor, dan very poor sesuai dengan tingkat kerusakannya dengan link
dataset yaitu https://www.kaggle.com/datasets/prudhvignv/road-damage-
classification-and-assessment dataset ini digunakan sebagai data pelatihan
model CNN.

5. Tools yang digunakan adalah Google Colab, Library TensorFlow, frame-
work Flask dan Keras

6. Implementasi sistem dilakukan menggunakan model terbaik hasil evaluasi
untuk mengklasifikasikan citra kondisi jalan berbasis web.

1.4 Tujuan
Tujuan dari penelitian ini adalah untuk:

1. Menerapkan dan membandingkan performa lima arsitektur CNN yaitu In-
ceptionV3, DenseNet201, VGG16, EfficientNetB0, ResNet50V2, dengan
menggunakan optimzer Adam, SGD, dan RMSProp dalam mengklasi-
fikasikan tingkat kerusakan jalan berbasis citra digital ke dalam kategori
good, satisfactory, poor, dan very poor serta menentukan kombinasi arsitek-
tur CNN dan optimizer yang menghasilkan performa terbaik berdasarkan
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Confusion Matrix.
2. Memberikan gambaran awal tentang penerapan klasifikasi citra untuk men-

dukung identifikasi kondisi jalan secara digital, sehingga dapat membantu
instansi terkait, seperti Dinas PUPR Pekanbaru, dalam mengambil keputu-
san terkait pemeliharaan jalan.

1.5 Manfaat
Manfaat dari penelitian ini adalah:

1. Memberikan gambaran komparatif performa lima arsitektur CNN dalam k-
lasifikasi multikelas kondisi jalan berbasis citra.

2. Menjadi referensi dalam pengembangan model klasifikasi jalan yang lebih
akurat untuk keperluan pemetaan atau monitoring infrastruktur.

3. Mendukung instansi seperti Dinas PUPR dalam pengambilan keputusan tek-
nis dengan menyediakan informasi awal mengenai kondisi jalan melalui
pendekatan berbasis citra digital.

1.6 Sistematika Penulisan
Adapun sistematika penulisan dari laporan Tugas Akhir ini yaitu:
BAB I. PENDAHULUAN
Pada bab ini akan membahas latar belakang masalah, rumusan masalah,

batasan masalah, tujuan penelitian, manfaat penelitian, dan sistematika penulisan.
BAB II. LANDASAN TEORI
Bab ini akan menguraikan secara teoritis konsep-konsep dan teori-teori yang

mendukung penelitian tugas akhir ini yang berasal dari jurnal ilmiah, prosiding,
buku serta studi kepustakaan yang digunakan sebagai tinjauan dalam pembuatan
Tugas Akhir ini.

BAB III. METODOLOGI PENELITIAN
Bab ini memaparkan mengenai tentang alur penelitian peneliti mulai dari

pengumpulan data hingga hasil prediksi.
BAB IV. HASIL DAN ANALISIS
Pada bab ini memaparkan mengenai hasil yang merupakan implementasi

dari algoritma CNN dengan beberapa arsitektur dalam klasifikasi gambar tingkat
kerusakan jalan.

BAB V. PENUTUP
Dalam bab ini, disajikan rangkuman dari kesimpulan yang dihasilkan dar-

i Tugas Akhir yang dilakukan, serta saran untuk penelitian lanjutan berdasarkan
temuan yang telah diperoleh dalam penelitian ini.
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BAB 2

LANDASAN TEORI

2.1 Kerusakan Jalan
Kerusakan jalan adalah kondisi di mana struktur atau fungsi permukaan

jalan mengalami perubahan dari kondisi semula. Menurut Pedoman Perencanaan
Perkerasan Jalan Raya Nomor 01/PR/M/2012 (Bina Marga), kerusakan jalan
didefinisikan sebagai tanda-tanda atau kondisi yang menunjukkan turunnya kua-
litas permukaan jalan. Kerusakan tersebut bisa berupa retakan, perubahan bentuk,
lubang, atau pengelupasan lapisan permukaan (Kementerian Pekerjaan Umum dan
Perumahan Rakyat Republik Indonesia, 2012).

Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR) telah men-
geluarkan Surat Edaran Nomor 12/SE/Db/2024 tentang Pedoman Leger Jalan un-
tuk menjelaskan parameter kondisi jalan yang digunakan Surface Distress Index
(SDI) dan Pavement Condition Index (PCI) untuk menilai tingkat kerusakan terse-
but. SDI menunjukkan tingkat kerusakan secara cepat di lapangan dengan meng-
gunakan hasil pengamatan visual terhadap jenis dan tingkat kerusakan pada per-
mukaan jalan. SDI dihitung berdasarkan jumlah lubang per 100 meter panjang
jalan, kedalaman alur roda (rutting), dan retak permukaan (luas dan lebar rata-rata
retak) (Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2024)

Sementara itu, Pavement Condition Index (PCI) adalah angka yang digu-
nakan untuk menunjukkan kondisi permukaan jalan. Angka ini didasarkan pa-
da pengamatan visual terhadap jenis, tingkat kerusakan, dan sebaran masalah pa-
da jalan tersebut (sesuai dengan Petunjuk Penentuan Indeks Kondisi Perkerasan
(IKP) dalam Surat Edaran Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor
19/SE/M/2016 tentang penerapan 10 pedoman di bidang jalan dan jembatan, tang-
gal 11 Oktober 2016) (Kementerian Pekerjaan Umum dan Perumahan Rakyat,
2016). Tabel 2.1 berikut menunjukkan penggunaan parameter ini untuk memba-
gi tingkat kerusakan permukaan jalan ke dalam beberapa kategori.

Tabel 2.1. Kategori Kondisi Berdasarkan Nilai SDI

Nilai SDI Kategori Kondisi
< 50 Baik

50–100 Sedang

100–150 Rusak Ringan

> 150 Rusak Berat
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Kategori kondisi jalan pada metode Surface Distress Index (SDI) yang di-
gunakan oleh Kementerian Pekerjaan Umum dan Perumahan Rakyat secara kon-
septual memiliki kesesuaian dengan pembagian kelas kondisi jalan pada dataset
Road Damage Classification and Assessment, yaitu good, satisfactory, poor, dan
very poor. Kesamaan tersebut terletak pada tujuan pengelompokan kondisi jalan
berdasarkan tingkat kerusakan permukaan yang dapat diamati secara visual. Na-
mun demikian, penelitian ini tidak melakukan perhitungan nilai SDI secara lang-
sung, melainkan menggunakan pendekatan klasifikasi visual berbasis citra digital
untuk mengelompokkan tingkat kondisi jalan.

Dalam konteks penelitian ini, istilah rusak mengacu pada kondisi per-
mukaan jalan yang menunjukkan adanya kerusakan yang dapat diamati secara vi-
sual melalui citra digital. Kerusakan tersebut meliputi indikasi seperti retakan yang
terlihat jelas, lubang pada permukaan jalan, pengelupasan lapisan perkerasan, atau
ketidakteraturan permukaan jalan yang berpotensi mengganggu fungsi dan kenya-
manan pengguna jalan (Kusumaningrum, Madenda, Karmilasari, dan Nahdalina,
2022). Pengelompokan kondisi jalan ke dalam kategori baik, sedang, rusak ringan,
dan rusak berat didasarkan pada tingkat keparahan kerusakan permukaan yang tam-
pak secara visual, bukan pada hasil pengukuran struktural jalan atau perhitungan
teknis secara langsung.

Penyebab utama kerusakan jalan antara lain kemacetan lalu lintas yang
berlebihan, kualitas bangunan atau bahan yang kurang baik, cuaca yang ekstrem,
serta kurangnya perawatan. Metode pemeriksaan secara manual membutuhkan
waktu dan biaya yang besar serta rentan terhadap penilaian subjektif di lapangan
(Kementerian Pekerjaan Umum, 2011; Kementerian Pekerjaan Umum dan Peruma-
han Rakyat Republik Indonesia, 2012). Oleh karena itu, penggunaan gambar dig-
ital dan algoritma Convolutional Neural Network (CNN) sangat diperlukan untuk
mengklasifikasikan kerusakan jalan secara otomatis dan lebih efisien.

2.2 Studi Kasus: Klasifikasi Citra Kerusakan Jalan
Klasifikasi citra kerusakan jalan adalah cara penting untuk memantau kon-

disi jalan, terutama untuk membantu proses inspeksi jalan secara otomatis meng-
gunakan teknologi penglihatan komputer dan pembelajaran mesin. Dengan me-
manfaatkan foto dari kamera kendaraan atau smartphone, berbagai jenis kerusakan
permukaan seperti retak longitudinal, retak transversal, retak alligator, serta lubang
jalan bisa terdeteksi dengan efisien (Kulambayev dkk., 2022).

Sebagai bagian dari proses pengolahan citra digital, klasifikasi kerusakan
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jalan dilakukan dengan menggunakan algoritma Convolutional Neural Network (C-
NN). CNN mampu mengambil ciri-ciri dari gambar permukaan jalan sehingga bisa
mengelompokkan kondisi jalan ke dalam berbagai tingkat kerusakan berdasarkan
data visual yang didapat. Jenis kerusakan yang biasanya diteliti mencakup retakan,
pelepasan permukaan, retakan di tepi jalan, hingga lubang jalan. Jika diband-
ingkan dengan metode manual atau pendekatan tradisional, CNN terbukti mem-
berikan hasil yang lebih akurat dalam mengidentifikasi jenis dan tingkat kerusakan
(Bouhsissin, Assemlali, dan Sael, 2025; Kulambayev dkk., 2022).

2.3 Deep Learning
Deep learning adalah jenis pembelajaran mesin yang memiliki kemampuan

untuk merepresentasikan fitur secara akurat melalui proses representasi non-linear
(Ahmed dkk., 2023). Deep learning memiliki kemampuan untuk secara otoma-
tis mengekstraksi fitur dari data mentah seperti gambar atau sinyal. Ini berbeda
dengan metode machine learning tradisional yang bergantung pada fitur buatan
(hand-crafted features) (Alzubaidi dkk., 2021). Penelitian Y. Li, Wei, Han, Huang,
dan Wang (2020) telah berhasil dilakukan dalam berbagai tugas, termasuk iden-
tifikasi target, deteksi objek, klasifikasi citra, pemrosesan bahasa alami, dan pen-
genalan suara (Y. Li dkk., 2020). Keuntungan utama dari Deep learning adalah
kemampuannya untuk memproses data yang besar dan kompleks secara efisien dan
meningkatkan akurasi pemrosesan data, menjadikannya alat yang berguna untuk
banyak aplikasi AI, seperti mengklasifikasikan kerusakan jalan (S. Li dan Zhang,
2025).

2.4 Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN) adalah model pembelajaran men-

dalam yang paling representatif untuk pengolahan data citra (X. Zhao dkk., 2024).
CNN adalah jaringan saraf berlapis yang dirancang khusus untuk mengenali dan
mengklasifikasikan gambar, dengan arsitektur yang efisien dalam mengurangi jum-
lah parameter dan mempermudah pelatihan, sehingga meningkatkan akurasi klasi-
fikasi (Y. Li dkk., 2020). CNN dirancang untuk mengolah data seperti gambar de-
ngan mengekstraksi fitur secara bertahap melalui konvolusi. Teknik seperti parame-
ter sharing dan koneksi terbatas membuatnya lebih efisien secara komputasi (Z. Li,
Liu, Yang, Peng, dan Zhou, 2022; Raj dan Kos, 2025). CNN umumnya memiliki
arsitektur berlapis yang mencakup tahap ekstraksi fitur dan klasifikasi akhir. Gam-
bar 2.1 menunjukkan struktur jaringan yang umum, menunjukkan jalan dari input
gambar hingga proses klasifikasi.
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Gambar 2.1. Arsitektur Convolutional Neural Network (CNN) (Patra dkk., 2021)

Struktur utama CNN terdiri dari convolutional layer untuk mendeteksi po-
la lokal, pooling layer untuk mengurangi dimensi dan mencegah overfitting, flatten
layer untuk mengubah data menjadi vektor, serta fully connected layer untuk meng-
hasilkan prediksi akhir. Contohnya, filter 5× 5 dapat mengekstrak fitur dasar, dan
average pooling terbukti efektif mempertahankan informasi penting seperti pada k-
lasifikasi kerusakan jalan (Anton, Nissa, Janiati, Cahya, dan Astuti, 2021; W. Wang
dkk., 2025). Fungsi aktivasi yang sering digunakan dalam CNN adalah ReLU, yang
menjaga nilai positif dan menghilangkan nilai negatif untuk mempercepat pelatihan
dan mencegah vanishing gradient. Untuk mencegah overfitting, digunakan teknik
dropout yang secara acak menonaktifkan neuron saat pelatihan guna meningkatkan
generalisasi model (Salehin dan Kang, 2023). Keunggulan CNN dalam klasifikasi
citra adalah kemampuannya mengekstraksi fitur secara otomatis tanpa rekayasa
manual, serta performanya yang unggul dalam tugas visual seperti klasifikasi, de-
teksi objek, dan segmentasi (X. Zhao dkk., 2024).

2.5 Pengolahan Citra Digital
Sebelum model pembelajaran mendalam seperti Convolutional Neural Net-

work (CNN) dapat digunakan untuk pelatihan dan prediksi, pengolahan citra digital
adalah tahap awal penting dalam pemrosesan data citra yang meningkatkan kuali-
tas data dan menyesuaikan formatnya (Liu, Soh, dan Lorang, 2021). Prapemros-
esan, atau preprocessing, adalah tahap penting dalam pengolahan gambar. Tahap
ini mencakup penyesuaian ukuran gambar (resizing) agar sesuai dengan arsitektur
CNN, biasanya menjadi 224 x 224 piksel, dan penggunaan padding untuk menjaga
proporsi objek. Untuk mempercepat proses pelatihan dan menjaga kestabilan nu-
merik, normalisasi digunakan, baik dengan membagi intensitas piksel dengan 255
maupun dengan menggunakan standarisasi berbasis nilai rata-rata dan standar de-
viasi (Krichen, 2023). Teknik augmentasi gambar dapat meningkatkan generalisas-
i dan mengurangi overfitting. Teknik-teknik ini termasuk transformasi geometrik
(rotasi, flip, zoom, cropping), serta penyesuaian visual (perubahan warna, kecera-
han, dan penambahan noise). Teknik ini bertujuan untuk meningkatkan variasi data
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latih agar model lebih sesuai dengan situasi dunia nyata (Shorten dan Khoshgof-
taar, 2019). Preprocessing sangat penting untuk meningkatkan generalisasi model,
mengurangi overfitting, dan mensimulasikan kondisi nyata, terutama dalam situ-
asi dengan data terbatas, seperti deteksi kerusakan jalan. Selama tahap ini, CNN
dapat belajar dengan lebih baik dan menghasilkan klasifikasi yang lebih akurat (G.-
H. Chen dkk., 2022).

2.6 Klafisikasi Citra Digital
Klasifikasi citra digital adalah proses pengelompokan gambar berdasarkan

karakteristik visual seperti pola, tekstur, warna, dan bentuk. Meskipun penting
dalam berbagai bidang seperti pengawasan lalu lintas dan deteksi medis, pen-
dekatan konvensional masih terbatas dalam menangani citra kompleks beresolusi
tinggi (Solihin, Syarief, Rochman, dan Rachmad, 2023). Proses klasifikasi citra
menjadi jauh lebih efisien dan akurat berkat kemajuan teknologi pembelajaran men-
dalam, terutama dengan munculnya Convolutional Neural Network (CNN). Dengan
kemampuan nya untuk membentuk representasi citra secara hierarki dan semantik,
CNN sangat informatif untuk sistem pengenalan visual. CNN mengekstraksi berba-
gai fitur secara bertahap, mulai dari fitur tingkat rendah seperti tepi dan warna, hing-
ga fitur tingkat tinggi seperti pola atau bentuk kompleks (Z. Q. Zhao, Zheng, Xu,
dan Wu, 2019).

2.7 Preprocessing Input
Preprocessing input adalah analisis awal data sebelum dimasukkan ke

dalam model pembelajaran mendalam atau deep learning. Tujuannya adalah un-
tuk meningkatkan kualitas data dan menyesuaikannya dengan kebutuhan algoritma
yang digunakan (Kim, 2024). Dalam konteks pengolahan citra, preprocessing men-
cakup langkah-langkah seperti menormalisasi nilai piksel, menyesuaikan ukuran
gambar, meningkatkan kualitas citra, dan mengurangi noise sebelum citra diproses
lebih lanjut oleh jaringan saraf. Dalam deep learning, preprocessing input dianggap
sebagai langkah penting dalam pipeline pemodelan karena pemilihan teknik yang
tepat dapat membantu mempercepat konvergensi, mengurangi tantangan pembe-
lajaran, dan meningkatkan kemampuan model untuk generalisasi pada data baru
(Nguyen-Tat, Hung, Nam, dan Ngo, 2025). Sebagai contoh penerapan preprocess-
ing input dalam transfer learning, Keras/TensorFlow menyediakan fungsi berna-
ma preprocess input yang dapat digunakan untuk mengekstrak data sebelum dima-
sukkan ke dalam model seperti VGG, ResNet, Inception, dan EfficientNet, fungsi
ini bukanlah model baru atau lapisan tambahan, melainkan bagian dari fase pemros-
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esan data (Keras Team, 2024b). Fungsi preprocess input memastikan bahwa format
dan distribusi piksel citra sesuai dengan konvensi yang digunakan saat model diter-
apkan pada dataset ImageNet, sehingga fitur yang telah dipelajari sebelumnya dapat
digunakan secara optimal selama proses fine-tuning (TensorFlow Team, 2024).

Setiap arsitektur CNN memiliki karakteristik preprocessing yang berbeda.
Misalnya, EfficientNet umumnya menerapkan proses rescaling dalam arsitekturnya
(pass-through), sementara arsitektur CNN lainnya, seperti ResNet dan VGG, men-
erapkan pengurangan nilai rata-rata atau saluran warna (Keras Team, 2024a). Be-
berapa penelitian terdahulu menunjukkan bahwa teknik preprocessing, seperti nor-
malisasi dan homogenisasi citra, memiliki dampak yang signifikan terhadap per-
forma transfer learning di domain yang relevan. Oleh karena itu, preprocessing
harus dipertimbangkan dengan cermat sebagai bagian dari metodologi eksperimen
(Singh, 2023; Ul Huda, Gade, dan Moeslund, 2021).

2.8 InceptionV3
InceptionV3 merupakan arsitektur CNN yang dirancang untuk

meningkatkan akurasi pengenalan citra dengan efisiensi komputasi tinggi.
Arsitektur ini menggunakan modul inception, yaitu blok konvolusi paralel dengan
berbagai ukuran kernel untuk menangkap fitur multi-skala (Abd Zaid, Mohammed,
dan Sumari, 2025). GoogLeNet pertama kali memperkenalkan modul ini, yang
memanfaatkan konvolusi 1× 1 untuk mengurangi dimensi sebelum menerapkan
konvolusi 3× 3 atau 5× 5. Ini meningkatkan efisiensi model (Patra dkk., 2021).
InceptionV3 kemudian menggunakan konvolusi faktorisasi untuk mengembangkan
metode ini. Ini termasuk memecah kernel 3× 3 menjadi 1× 3 dan 3× 1, dan
mengganti kernel 5× 5 dengan dua lapisan 3× 33 secara berurutan. Selain itu,
InceptionV3 memiliki klasifikator pendukung yang meningkatkan aliran gradien
dan mempercepat proses pelatihan (Abd Zaid dkk., 2025). Ukuran input diperbesar
menjadi 299× 299 piksel guna menangkap fitur kompleks (Z. Li dkk., 2022),
dan bagian akhir menggunakan ANN dan fungsi aktivasi softmax untuk klasifikasi
(Joshi, Tripathi, Bose, dan Bhardwaj, 2020). Dengan menggunakan pemros-
esan multi-skala baik di modul utama maupun cabangnya, desain InceptionV3
mendukung representasi fitur berdimensi tinggi (Y. Li dkk., 2020). Arsitektur
utama model InceptionV3 beserta komponen-komponennya ditampilkan pada
Gambar 2.2.
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Gambar 2.2. Arsitektur InceptionV3 (Patra dkk., 2021)

2.9 DenseNet201
DenseNet201 adalah varian dari arsitektur Dense Convolutional Network

dengan 201 lapisan. Dibangun untuk mengatasi masalah yang sering terjadi pada
CNN dalam, seperti kehilangan gradien, duplikasi fitur, dan jumlah parameter yang
besar. Dengan menghubungkan setiap lapisan ke lapisan sebelumnya, arus infor-
masi dan gradien dapat mengalir dengan lebih efisien (Huang, Liu, van der Maaten,
dan Weinberger, 2018). Arsitektur ini terdiri dari Dense Blocks dan Transition Lay-
ers, di mana setiap lapisan blok menerima input dari seluruh lapisan sebelumnya.
Ini membantu mengurangi parameter dan overfitting (Zhou dkk., 2024). Transi-
tion layers juga berperan dalam mengatur jumlah saluran dan mengurangi dimensi
spasial.

DenseNet201 efisien secara komputasi karena hanya membutuhkan satu
lapisan fully connected, serta umum digunakan dengan input citra 224 x 224 x
3 dan konvolusi awal 7 x 7 (Apeagyei, Ademolake, dan Adom-Asamoah, 2023).
Dengan berfokus pada aspek konektivitas piksel, fungsi loss yang baru dapat
meningkatkan deteksi gambar pada DenseNet201 sehingga menghasilkan predik-
si retakan yang lebih koheren dan akurat (Mei, Gül, dan Azim, 2020). Keunggulan
lainnya adalah berbagi fitur lapisan, yang mempercepat pelatihan dan memperta-
hankan performa tinggi dengan parameter yang relatif sedikit (Adam, Mohamed,
dan Ibrahim, 2021). Karena memiliki akses langsung ke citra dan gradien input di
setiap lapisan, DenseNet mengurangi biaya komputasi (Rahman dkk., 2020). Ar-
sitektur DenseNet201 secara umum terlihat pada Gambar 2.3, yang menunjukkan
hubungan yang padat antar lapisan untuk membantu proses pelatihan yang lebi-
h efisien dan penggunaan fitur secara maksimal. Pilihan arsitektur yang bijak ini
memudahkan penyebaran dan pembagian fitur di berbagai lapisan. Desain yang sal-
ing terhubung ini adalah karakteristik DenseNet201 (Adam dkk., 2021). Arsitektur
utama DenseNet201 secara umum ditunjukkan pada Gambar 2.3.
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Gambar 2.3. Arsitektur DenseNet201 (X. Zhao dkk., 2024)

2.10 VGG16
VGG16 merupakan arsitektur CNN yang dapat mengekstraksi fitur hierarkis

dari data piksel, menjadikannya arsitektur yang banyak digunakan dalam klasifikasi
gambar. Model ini terdiri dari 13 lapisan konvolusional dan 3 fully connected.
Model ini disusun dalam lima blok konvolusi, dengan filter 3× 3 di setiap akhir
blok dan maksimum penggabungan 2×2 di akhir blok (Patra dkk., 2021). VGG16
mampu membuat representasi fitur kompleks dengan aktivasi ReLU dan softmax
untuk klasifikasi akhir. Dalam beberapa situasi tertentu, dua lapisan yang benar-
benar terhubung diganti dengan satu lapisan yang memiliki 256 node untuk keper-
luan deteksi khusus, seperti jalan berlubang (Patra dkk., 2021; Theckedath dan
Sedamkar, 2020). Strukturnya yang cukup dalam namun sederhana membuatnya
stabil, menghindari overfitting dan hilangnya gradien (Priyanka, Lakshmi, Vysh-
navi, Suresha, dan Jipeng, 2025). VGG16 menunjukkan performa lebih baik dari
VGG19 pada deteksi kerusakan jalan (Yin, Qu, Huang, dan Chen, 2021), serta tetap
akurat meski diterapkan pada dataset kecil (Ichsan, Riyadi, dan Pardede, 2024).
Arsitektur VGG16 secara umum ditunjukkan pada Gambar 2.4.

Gambar 2.4. Arsitektur VGG16 (Patra dkk., 2021)

2.11 EfficientNetB0
EfficientNetB0 adalah arsitektur CNN yang bertujuan untuk mencapai

akurasi tinggi sambil meningkatkan efisiensi komputasi. Model ini menggunakan
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pendekatan penskalaan majemuk untuk menyeimbangkan kedalaman, lebar, dan
resolusi jaringan, dan menghasilkan performa yang sangat baik dengan jumlah pa-
rameter dan FLOPS yang jauh lebih rendah dibandingkan dengan CNN konven-
sional (Chaudhary & Verma, 2024). Arsitekturnya terdiri dari konvolusi awal 3×3,
16 blok MBConv, konvolusi 1× 1, global average pooling, dan klasifikasi akhir.
Untuk stabilitas pelatihan, Swish activation dan batch normalization digunakan (Su
dan Wang, 2020). Blok MBConv memiliki modul Squeeze-and-Excitation untuk
mengatur fitur penting dengan cara yang berbeda. Model ini memiliki sekitar 66
juta parameter, yang membuatnya lebih cepat dan sederhana daripada banyak CN-
N lainnya (Mirzaei, Mohammed, Sekeroglu, dan Ilhan, 2025). Selain memperluas
jaringan, penskalaan parameter yang seimbang membantunya menghindari over-
fitting pada dataset yang lebih kecil (Hassan dkk., 2025). EfficientNetB0 cocok
untuk sistem dengan daya terbatas seperti perangkat mobile dan aplikasi deteksi
jalan karena ringan dan fleksibel (Chaudhary dan Verma, 2024). Model arsitektur
EfficientNetB0 ditunjukkan pada Gambar 2.5.

Gambar 2.5. Arsitektur EfficientB0
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2.12 ResNet50V2
ResNet50V2 adalah modifikasi ResNet50 yang menggunakan metode pre-

activation. Aktivasi dan normalisasi batch dilakukan sebelum konvolusi. Metode i-
ni mempercepat konvergensi model dan membantu mengatasi gradient yang hilang.
Model ini terdiri dari 50 lapisan dan sejumlah blok residual dengan connection skip,
yang memungkinkan aliran data langsung ke lapisan lebih dalam tanpa kehilang-
an konteks penting. Ini membuat pelatihan jaringan dalam lebih stabil dan efektif
(Mangeri, Gnana Prakasi, Kanmani, dan Puppala, 2021). ResNet50V2 digunakan
secara luas dalam berbagai tugas visi komputer karena menawarkan keseimbangan
antara akurasi dan efisiensi. Dibandingkan dengan versi lain, seperti ResNet18 atau
ResNet101, ResNet50V2 memiliki kedalaman yang cukup untuk menghasilkan k-
lasifikasi yang akurat tanpa beban komputasi yang berlebihan. ResNet50V2 dapat
digunakan dengan baik dalam transfer learning dengan bobot pra-latih dari dataset
besar seperti ImageNet. Ini memiliki kemampuan untuk menerima input gambar
dengan resolusi yang berbeda, mulai dari 224×224 piksel hingga 256×256 piksel,
tanpa mengurangi ketepatan fitur (Daoud dkk., 2025). Model arsitektur Efficient-
NetB0 ditunjukkan pada Gambar 2.6

Gambar 2.6. Arsitektur ResNet50V2 (Hamida dkk., 2023)

2.13 Adaptive Moment Estimation
Adaptive Moment Estimation (Adam) adalah algoritma optimasi berbasis

gradient descent yang banyak digunakan dalam pelatihan CNN. Algoritma ini
menggabungkan keunggulan Momentum dan RMSprop untuk mempercepat konver-
gensi dan meningkatkan stabilitas pelatihan (Arafin dkk., 2024). Ada dua estimasi
momen yang digunakan Adam untuk menyesuaikan laju pembelajaran untuk setiap
parameter. Ini adalah rata-rata gradien pertama dan kuadrat gradien kedua, yang
keduanya dihitung dengan eksponensial dari gradien sebelumnya. Metode ini men-
jaga kestabilan pembaruan bobot dan membantu menghindari gradient yang hilang
(Soujanya dan Sitamahalakshmi, 2020). Dalam klasifikasi multikelas, Adam sering
digunakan sebagai fungsi loss kategoris cross-entropy, keduanya terbukti efektif
dalam mempercepat pelatihan dan menghasilkan akurasi tinggi (Shamila Ebenezer
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dkk., 2021).

mt = β1mt−1 +(1−β1)gt (2.1)

vt = β2vt−1 +(1−β2)g2
t (2.2)

Keterangan:

mt rata-rata eksponensial dari gradien pada iterasi ke-t

vt rata-rata eksponensial dari kuadrat gradien pada iterasi ke-t

gt nilai gradien pada iterasi ke-t

β1 parameter peluruhan untuk momen pertama (biasanya mendekati 1, misalnya
0,9)

β2 parameter peluruhan untuk momen kedua (biasanya mendekati 1, misalnya
0,999)

t indeks iterasi atau langkah pelatihan ke-t

2.14 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) adalah algoritma optimasi dasar yang

sering digunakan dalam pelatihan jaringan saraf karena mudah dan efisien un-
tuk data berskala besar. Ia memperbarui parameter model secara iteratif dengan
menggunakan subset acak dari data pelatihan, sehingga hemat memori dan cepat
(Wulandari, Sari, Al-sawaff, dan Manickam, 2025). Namun, performanya sensitif
terhadap pemilihan learning rate, nilai yang salah dapat menyebabkan perkemban-
gan yang lambat atau tidak stabil (Chakroun, Haber, dan Ashby, 2017). Meskipun
varian seperti Momentum dan Nesterov telah dikembangkan untuk meningkatkan
performa, tetapi algoritma ini masih kurang adaptif dibandingkan dengan Adam
atau AdaMax (Soydaner, 2020). Karena SGD banyak digunakan dalam model pem-
belajaran mesin, pengembangan algoritma SGD privat sangat penting untuk mengu-
rangi kebocoran privasi yang diposting oleh gradien (P. Wang, Lei, Ying, dan Zhou,
2024).

ĝ =
1
m ∑

i
∇θL

(
f (x(i);θ), y(i)

)
(2.3)

θ← θ− εkĝ (2.4)
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Keterangan:

ĝ estimasi gradien rata-rata dari fungsi kerugian

m ukuran minibatch

∇θ turunan (gradien) terhadap parameter θ

L fungsi kerugian (loss function)

f (x(i);θ) output model untuk input ke-i dengan parameter θ

y(i) label target untuk data ke-i

θ parameter model

εk laju pembelajaran (learning rate) pada iterasi ke-k

k indeks iterasi pelatihan ke-k

2.15 RMSprop
RMSprop adalah algoritma optimasi turunan dari gradient descent yang di-

maksudkan untuk mengatasi penurunan kecepatan belajar yang signifikan, seperti
yang terlihat pada Adagrad. Ia menormalkan pembaruan parameter, mempercepat
konvergensi, dan menjaga stabilitas (Soujanya dan Sitamahalakshmi, 2020). Berbe-
da dari Adagrad, RMSprop mengurangi osilasi dan mempercepat penyatuan arah
pembelajaran dengan menyesuaikan kecepatan pembelajaran untuk setiap parame-
ter (Soydaner, 2020). Algoritma ini juga berfungsi dengan baik dalam lingkungan
non-konveks seperti pelatihan jaringan saraf dalam, di mana permukaan kehilangan
fungsi lokal minimal dan kompleks (Z. Li dkk., 2022).

vt = ρvt−1 +(1−ρ)g2
t (2.5)

∆wt =−
η√

vt + εgt
(2.6)

Keterangan:

vt rata-rata eksponensial dari kuadrat gradien pada iterasi ke-t

ρ faktor peluruhan (decay rate) untuk rata-rata kuadrat gradien

gt nilai gradien pada iterasi ke-t
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∆wt perubahan bobot (parameter) pada iterasi ke-t

η laju pembelajaran (learning rate)

ε konstanta kecil untuk mencegah pembagian dengan nol

t indeks iterasi pelatihan ke-t

2.16 Confussion Matrix
Confusion Matrix adalah salah satu teknik evaluasi untuk mengklasi-

fikasikan performa berdasarkan benar dan salah. Empat output dihasilkan dari per-
hitungan rumus ini yaitu recall, akurasi, presisi, dan tingkat kesalahan. Penilaian
akurasi dan kesalahan item tes menjadi dasar untuk mengevaluasi model klasifikasi
(Dwinnie dkk., 2023). Confusion matrix terdiri dari empat komponen utama, yaitu
true positive (TP) dan true negative (TN) yang menunjukkan prediksi benar oleh
model, serta false positive (FP) dan false negative (FN) yang menunjukkan prediksi
keliru (Valero-Carreras dkk., 2023). Diagram confusion matrix dapat dilihat pada
Gambar 2.7

Gambar 2.7. Confusion Matrix (Valero-Carreras dkk., 2023)

Persamaan evaluasi kerja dapat dihitung sebagai berikut (Alzubaidi dkk.,
2021):

1. Akurasi = Mengukur tingkat ketepatan model dalam mengklasifikasikan
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seluruh data.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.7)

2. Specificity = Mengukur kemampuan model dalam mengidentifikasi data
negatif dengan benar.

Specificity =
T N

FP+T N
(2.8)

3. Recall = Mengukur kemampuan model dalam mendeteksi data positif.

Recall =
T P

T P+FN
(2.9)

4. Precision = Mengukur ketepatan model dalam memprediksi data positif.

Precision =
T P

T P+FP
(2.10)

5. F1-Score = Merupakan rata-rata harmonik antara presisi dan recall.

F1-score = 2× Precision×Recall
Precision+Recall

(2.11)

2.17 Framework Flask
Framework Flask adalah kerangka kerja web mikro berbasis bahasa pem-

rograman Python yang fleksibel dan ringan, sehingga banyak digunakan dalam pe-
ngembangan aplikasi dan layanan online berbasis Application Programming Inter-
face (API). Sifat minimalis yang dimiliki Flask memberikan para pengembang ke-
sempatan untuk menambahkan berbagai library atau extension sesuai dengan kebu-
tuhan aplikasi, sehingga framework ini dapat digunakan dalam sistem yang memer-
lukan tingkat kustomisasi tinggi dan integrasi dengan basis data atau layanan pihak
ketiga (Suraya dan Sholeh, 2022). Framework ini menyediakan fitur inti seper-
ti routing, pengelola request-respons, dan integrasi template yang memungkinkan
pengembang untuk membuat aplikasi web secara terstruktur tanpa perlu memeriksa
setiap komponen sistem dari awal (Walingkas dan Saian, 2023).

Selain itu, Flask tidak mengharuskan proyek untuk mengikuti pola atau
struktur tertentu, sehingga pengembang dapat menyesuaikan arsitektur aplikasi se-
cara fleksibel sesuai dengan kompleksitas dan tujuan sistem. Karakteristik tersebut
menunjukkan bahwa Flask sering digunakan dalam aplikasi machine learning, di
mana kerangka kerja ini berfungsi sebagai backend untuk menghubungkan mod-
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el yang telah dikembangkan dengan data pengguna atau sistem eksternal melalui
layanan API (Albesher dan Alfayez, 2024; Braganca dan Kho, 2023). Dengan ke-
mampuannya untuk menangani permintaan pengguna secara efisien dan memfasili-
tasi integrasi berbagai komponen, Flask dianggap sebagai solusi yang cocok untuk
mengimplementasikan sistem cerdas berbasis web dalam penelitian atau aplikasi
dunia nyata (Mani dan Shenoy, 2025).

2.18 Penelitian Terdahulu
Penelitian terdahulu yang dilakukan oleh Arafin dkk. (2024) menyelidiki

klasifikasi dan segmentasi cacat beton, khususnya retakan dan spalling, menggu-
nakan pendekatan deep learning berbasis (CNN). Untuk klasifikasi menggunakan
tiga arsitektur CNN yaitu VGG-19, ResNet50, dan InceptionV3. Dataset berjum-
lah 4087 citra retakan dan 1100 citra spalling beresolusi 224 x 224 piksel RG-
B, yang dibagi ke dalam data pelatihan, validasi, dan pengujian. Model klasi-
fikasi diuji menggunakan optimizer SGD dan RMSprop dengan variasi learning
rate. Hasil penelitian ini menunjukkan bahwa InceptionV3 dengan RMSprop mem-
berikan performa klasifikasi terbaik dengan akurasi sebesar 91,98% (Arafin dkk.,
2024). Temuan ini menegaskan keunggulan SGD dalam hal generalisasi dan stabil-
itas model serta menunjukkan bahwa pemilihan arsitektur dan optimizer yang tepat
sangat berpengaruh pada performa model.

Swain dan Tripathy (2024) melakukan penelitian tentang deteksi otomatis
lubang jalan dengan menggunakan model VGG-16 yang telah dilatih sebelumnya
sebagai metode transfer learning dan CNN untuk klasifikasi. Dataset terdiri dari
1441 gambar lubang jalan 720× 720 piksel, yang dibagi menjadi 20% pengujian
dan 80% pelatihan. Selama 100 epoch, pelatihan dilakukan menggunakan optimiz-
er Adam dengan ukuran batch 32, learning rate 0.001. ReLU di seluruh lapisan dan
softmax di lapisan output digunakan untuk aktivasi. Hasil penelitian menunjukkan
akurasi klasifikasi sebesar 97,3%, dan dengan teknik transfer learning, model men-
capai akurasi tertinggi 99,23% dengan waktu inferensi 0,008 detik dan ukuran mod-
el hanya 8,33 MB. Studi ini menunjukkan bahwa kombinasi VGG-16 dan CNN
efektif dalam deteksi lubang jalan secara real-time (Swain dan Tripathy, 2024)

Penelitian yang dilakukan oleh Matarneh dkk. (2024) melakukan analisis
terhadap sepuluh arsitektur CNN yang telah dilatih sebelumnya untuk klasifikasi re-
takan pada perkerasan aspal. Arsitektur yang dievaluasi meliputi AlexNet, VGG16,
VGG19, GoogleNet, ResNet101, ShuffleNet, InceptionV3, DenseNet201, Dark-
Net19, dan Xception. Dataset yang digunakan mencakup retakan diagonal, longitu-
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dinal, dan horizontal yang diambil dari CrackTree, GAP, dan CRACK500. Evaluasi
model dilakukan menggunakan metrik akurasi, presisi, recall, skor F1, dan spesi-
fisitas. Hasil pengujian awal menunjukkan bahwa DenseNet201 mencapai akurasi
tinggi sebesar 94,12%, diikuti oleh ShuffleNet dengan 94,07% dan ResNet101 de-
ngan 93,83%, sementara arsitektur VGG16 dan VGG19 menunjukkan performa
yang sedikit lebih rendah. Hal ini menunjukkan bahwa arsitektur CNN dengan
kedalaman yang lebih besar, seperti DenseNet201, memiliki potensi yang baik un-
tuk mengklasifikasikan retakan jalan (Matarneh dkk., 2024).

Chaudhary dan Verma (2024) mengembangkan sistem klasifikasi per-
mukaan jalan berbasis citra untuk membantu navigasi tunanetra, dengan meng-
gunakan arsitektur Convolutional Neural Network EfficientNetB0. Arsitektur ini
dipilih karena ringan, dengan 5,3 juta parameter dan 350 MB serta cocok untuk
perangkat embedded. Dataset yang digunakan terdiri dari 5.558 citra permukaan
jalan yang diklasifikasikan ke dalam tiga kategori, yaitu aspal, beraspal, dan tidak
beraspal, dengan pembagian data pelatihan, validasi, dan pengujian. Selain itu,
proses augmentasi seperti flip acak, rotasi, dan zoom digunakan. Pelatihan di-
lakukan menggunakan optimizer Adam dan RMSprop dengan learning rate 1e-5
dan ukuran batch 10. Hasil penelitian menunjukkan bahwa EfficientNetB0 tan-
pa mekanisme tambahan mampu mencapai akurasi sebesar 96,85%, yang menun-
jukkan bahwa arsitektur ini memiliki performa yang baik dalam klasifikasi per-
mukaan jalan berbasis citra (Chaudhary dan Verma, 2024).

Abd Zaid dkk. (2025) menawarkan pendekatan yang menggunakan trans-
fer learning untuk klasifikasi fitur jalan seperti flyover, bundaran, dan penyeberan-
gan. Metode ini menggunakan arsitektur CNN seperti InceptionV3, ResNet50, Mo-
bileNetV2, dan VGG19, serta model CNN khusus. Dataset 7.616 gambar 256 x 256
piksel dikumpulkan dari MLRSNet dan gambar satelit Google Earth, dengan pem-
bagian data pelatihan, validasi, dan pengujian. InceptionV3 memiliki hasil terbaik
pada validasi (98,9%), dan ResNet50 memiliki hasil terbaik pada pengujian (98,7%)
(Abd Zaid dkk., 2025). Senada dengan penelitian Vaz, Gasparello, de Gouveia,
dan Senger (2023) melakukan penelitian tentang deteksi kerusakan jalan meng-
gunakan MobileNetV3, ResNet50V2, dan versi modifikasinya, ResNet50V2(M),
dengan dataset grayscale dari sistem LabPavi. Model terbaik, ResNet50V2(M),
menunjukkan akurasi rata-rata 80% untuk lubang dan eksudasi, tetapi yang kurang
optimal membedakan subtipe retakan dengan akurasi di bawah 70%. Kedua studi
ini menegaskan bahwa pemilihan arsitektur dan desain model sangat memengaruhi
efektivitas klasifikasi fitur dan kerusakan jalan (Vaz dkk., 2023).
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Sementara itu, Shamila Ebenezer dkk. (2021) mengklasifikasikan berbagai
jenis kerusakan infrastruktur dengan menggunakan model kelompok yang meng-
gabungkan CNN kustom, Xception, dan AlexNet. Dataset yang digunakan terdiri
dari 1.176 gambar yang dibagi menjadi 90% data pelatihan dan 10% data pengujian,
dan model yang diusulkan mencapai akurasi validasi sebesar 87,1%. Studi ini me-
nunjukkan bahwa CNN dapat digunakan untuk mendeteksi kerusakan infrastruktur
jalan, meskipun pendekatan yang digunakan melibatkan penggabungan beberapa
model (Shamila Ebenezer dkk., 2021). Ringkasan penelitian terdahulu yang rele-
van disajikan pada Tabel 2.2.

Tabel 2.2. Ringkasan Penelitian Terdahulu

No Peneliti
dan
Tahun

Objek
Penelitian

Arsitektur C-
NN

Optimizer Hasil dan Keteran-
gan

1 Arafin
dkk.
(2024)

Retakan
dan s-
palling
beton

VGG-19,
ResNet50,
InceptionV3

SGD, RM-
Sprop,
Adam

Akurasi tertinggi
91,98% diperoleh
menggunakan In-
ceptionV3 untuk
klasifikasi dan seg-
mentasi kerusakan
beton.

2 Swain
dan Tri-
pathy
(2024)

Lubang
jalan

VGG-16 Adam Akurasi berkisar an-
tara 97,3% hingga
99,23% dengan pen-
dekatan CNN berba-
sis transfer learning.

3 Matarneh
dkk.
(2024)

Retakan
jalan aspal

DenseNet201,
VGG16, dan
arsitektur
CNN lainnya

Optimizer
standar

Akurasi awal
sebesar 94,12%
diperoleh menggu-
nakan DenseNet201
dengan evaluasi
multi-arsitektur
CNN.
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Tabel 2.2 Ringkasan Penelitian Terdahulu (Tabel lanjutan...)

No Peneliti
dan
Tahun

Objek
Penelitian

Arsitektur C-
NN

Optimizer Hasil dan Keteran-
gan

4 Chaudhary
dan Ver-
ma
(2024)

Permukaan
jalan

EfficientNet-
B0

Adam,
RMSprop

Model CNN ringan
dan efisien dengan
akurasi lebih dari
96%.

5 Abd Zaid
dkk.
(2025)

Fitur jalan InceptionV3
dan ResNet50

Optimizer
standar

Pendekatan transfer
learning meng-
hasilkan akurasi
hingga 98,9% pada
klasifikasi kondisi
jalan.

6 Vaz dkk.
(2023)

Kerusakan
jalan

ResNet50V2 Optimizer
standar

Akurasi sekitar 80%
dengan tantangan
pada klasifikasi
subtipe kerusakan
jalan.

7 Shamila
Ebenez-
er dkk.
(2021)

Kerusakan
infrastruk-
tur

CNN dan X-
ception

Optimizer
standar

Pendekatan CN-
N menghasilkan
akurasi sebesar
87,1% untuk deteksi
kerusakan jalan.

8 Yusup
Yulianto
dan Ari
Wibowo
(2023)

Kerusakan
jalan aspal

CNN Optimizer
standar

Menggunakan
dataset publik K-
aggle yang sama
dengan hasil akurasi
yang bervariasi.

Berdasarkan ringkasan penelitian terdahulu yang disajikan pada Tabel 2.2,
dapat disimpulkan bahwa pendekatan Convolutional Neural Network (CNN) telah
banyak diterapkan dalam mendeteksi dan mengklasifikasikan kerusakan jalan de-
ngan hasil yang cukup baik. Namun, sebagian besar penelitian masih berfokus
pada jenis kerusakan tertentu, menggunakan satu arsitektur CNN, atau meman-
faatkan dataset yang bersifat terkontrol sehingga belum sepenuhnya merepresen-
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tasikan variasi kondisi jalan di lapangan. Selain itu, perbandingan performa bebe-
rapa arsitektur CNN dan pengaruh penggunaan optimizer yang berbeda dalam satu
kerangka penelitian masih terbatas. Oleh karena itu, penelitian ini berfokus pada
klasifikasi tingkat kerusakan jalan berbasis citra digital dengan membandingkan be-
berapa arsitektur CNN, yaitu InceptionV3, DenseNet201, VGG16, EfficientNetB0,
dan ResNet50V2, serta menggunakan optimizer Adam, SGD, dan RMSprop, guna
memperoleh model yang stabil dan relevan untuk diterapkan pada kondisi nyata.
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BAB 3

METODOLOGI PENELITIAN

Adapun tahapan metodologi penelitian yang digunakan dapat dilihat pada
Gambar 3.1 berikut.

Gambar 3.1. Metodologi Penelitian

3.1 Tahap Perencanaan Penelitian
1. Identifikasi Masalah

Pada tahap ini, peneliti mengidentifikasi permasalahan terkait klasifikasi t-
ingkat kerusakan jalan berdasarkan informasi yang diperoleh mengenai kon-
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disi infrastruktur di Indonesia, khususnya di kota Pekanbaru Provinsi Riau.
Informasi tersebut dihimpun dari berbagai sumber seperti Perwakilan Badan
Pemeriksa Keuangan (BPK) RI di Riau, Kementerian Pekerjaan Umum dan
Perumahan Rakyat (PUPR), serta media lokal yang menyoroti kerusakan
jalan dan dampaknya terhadap aktivitas masyarakat. Untuk memperkuat
proses identifikasi permasalahan, peneliti juga melakukan wawancara de-
ngan pihak terkait guna memperoleh gambaran kondisi lapangan serta k-
endala dalam evaluasi kerusakan jalan. Pedoman pertanyaan dan ringkasan
hasil wawancara disajikan pada Lampiran B. Selain itu, peneliti melam-
pirkan dokumentasi kegiatan pendukung berupa dokumentasi wawancara,
komunikasi dengan pihak terkait, serta dokumentasi visual kondisi jalan
yang disajikan pada Lampiran C.

2. Studi Literatur.
Studi literatur merupakan langkah awal yang dilakukan sebelum memu-
lai suatu penelitian, yaitu dengan menyusun perencanaan. Tahapan ini di-
lakukan dengan menelaah berbagai sumber bacaan, baik dari jurnal nasion-
al maupun internasional, yang relevan dengan topik penelitian. Tujuannya
adalah untuk memperoleh informasi sebagai dasar dalam membangun k-
erangka berpikir penelitian.

3.2 Data Collection
Penelitian ini menggunakan dataset publik sebagai sumber data utama, da-

lam proses pelatihan, validasi, dan pengujian model. Dataset yang digunakan di-
peroleh dari platform Kaggle dengan nama Road Damage Classification and As-
sessment. Dataset ini dipilih karena menyediakan citra kondisi jalan yang telah
teranotasi dengan baik dan umum digunakan dalam penelitian klasifikasi kerusakan
jalan berbasis citra. Dataset ini terdiri dari sekitar 2.078 gambar dan terbagi ke
dalam empat kelas kondisi jalan, yaitu good berjumlah 845 data, satisfactory se-
banyak 515 data, poor sebanyak 396, dan very poor sebanyak 318. Keempat ke-
lasnya merepresentasikan variasi tingkat kerusakan permukaan jalan yang berbeda,
sehingga sesuai untuk kebutuhan klasifikasi multikelas.

Citra pada dataset ini memiliki variasi sudut pandang, jarak pengambilan
gambar, serta kondisi pencahayaan, sehingga mencerminkan kondisi permukaan
jalan yang beragam di lapangan. Variasi ini mencerminkan kondisi permukaan jalan
yang berbeda-beda dan memberikan tantangan yang realistis bagi model dalam
proses pembelajaran. Dengan karakteristik tersebut, dataset ini dinilai cukup repre-
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sentatif untuk digunakan sebagai dasar pengembangan dan evaluasi model Convo-
lutional Neural Network (CNN).

Seluruh citra pada dataset selanjutnya diproses melalui tahap preprocessing,
khususnya penyesuaian ukuran citra (resize) menjadi 224×224 piksel, agar sesuai
dengan kebutuhan input arsitektur CNN yang digunakan. Penyeragaman ukuran
citra ini bertujuan untuk memastikan konsistensi dimensi input serta mendukung
proses pelatihan model yang lebih stabil dan optimal.

3.3 Split Data (80:20)
Pada tahap berikutnya, dataset dibagi menjadi tiga bagian yaitu data train-

ing, data validation, dan data testing. Sebelum model dijalankan, langkah ini sangat
penting dalam proses persiapan data. Dalam penelitian ini, metode Hold-Out digu-
nakan dengan perbandingan rasio 80:10:10. Selanjutnya, data yang telah dibagi
ditempatkan dalam direktori yang berbeda untuk memudahkan administrasi sela-
ma proses pelatihan dan evaluasi. Untuk memastikan bahwa model yang dikem-
bangkan dapat diuji secara objektif dan memiliki kemampuan generalisasi yang
baik terhadap data yang belum pernah dilihat sebelumnya, serta untuk menghindari
overfitting.

3.4 Preprocessing Data
Preprocessing data dilakukan untuk meningkatkan kualitas gambar dan

mengurangi gangguan (noise) yang menghambat performa model. Dalam peneli-
tian ini, tahapan preprocessing mencakup penyesuaian ukuran gambar, normalisasi
nilai piksel, dan augmentasi data.

1. Resize Image
Penyesuaian ukuran gambar dilakukan untuk menyeragamkan dimensi selu-
ruh citra dalam dataset. Semua gambar jalan diubah ukurannya menjadi 224
x 224 piksel. Ukuran ini dipilih karena sesuai dengan format input standar
dari beberapa arsitektur Convolutional Neural Network (CNN), seperti In-
ceptionV3, DenseNet201, VGG16, EfficientNetB0, ResNet50V2.

2. Normalization
Normalisasi digunakan untuk mengonversi nilai piksel dari setiap gambar
ke skala antara 0 dan 1. Proses ini dilakukan dengan cara membagi setiap
nilai piksel dengan angka 255, yang merupakan nilai tertinggi dalam for-
mat warna RGB. Teknik ini membantu model dalam mempercepat proses
pelatihan dan menjaga kestabilan pembelajaran.

3. Augmentation
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Augmentasi data dilakukan untuk meningkatkan variasi dan jumlah citra
pelatihan guna mengurangi risiko overfitting serta memperkaya representasi
visual dari setiap kelas. Teknik ini menciptakan versi modifikasi dari gam-
bar asli melalui penerapan rotasi hingga 30 derajat, pembalikan horizon-
tal, perbesaran (zoom) maksimal 15%, pergeseran posisi horizontal, vertical
flip dinonaktifkan karena tidak sesuai karakteristik data jalan, serta shear
(kemiringan) sebesar 15%. Area kosong akibat transformasi diisi meng-
gunakan metode nearest agar struktur citra tetap terjaga. Selain itu, pre-
processing input dapat digunakan melalui parameter preprocessing function
untuk mengubah nilai dan format gambar sesuai dengan arsitektur CNN
yang digunakan. Proses preprocessing dan augmentasi ini dilakukan meng-
gunakan modul ImageDataGenerator pada TensorFlow. Ini meningkatkan
kemampuan model untuk diterapkan pada data baru.

3.5 CNN Architecture Model
Pada tahap ini dilakukan pengujian model dengan menerapkan beberapa ar-

sitektur CNN untuk klasifikasi tingkat kerusakan jalan berbasis citra digital. Ar-
sitektur yang digunakan meliputi InceptionV3, DenseNet201, VGG16, Efficient-
NetB0, ResNet50V2. Untuk mengoptimalkan proses ekstraksi fitur dan mencegah
overfitting, setiap arsitektur disesuaikan dengan menambahkan lapisan tambahan
seperti fungsi aktivasi ReLU, Global Average Pooling, Dense layer, Batch Nor-
malization, dan Dropout. Seluruh model dilengkapi dengan lapisan output yang
memiliki empat neuron, menggunakan fungsi aktivasi softmax karena penelitian ini
bertujuan mengklasifikasikan gambar ke dalam empat kategori kondisi jalan. Pa-
da tahap pemrosesan input, digunakan dua pendekatan, yaitu tanpa preprocessing
input dan dengan preprocessing input bawaan dari masing-masing arsitektur CN-
N. Tujuan penggunaan pemrosesan preprocessing input adalah untuk mencocokkan
distribusi nilai piksel citra dengan karakteristik model yang telah ditentukan se-
belumnya pada dataset ImageNet, sehingga transfer learning dapat berjalan lebih
optimal.

Seluruh model dikompilasi dengan menggunakan fungsi loss sparse cat-
egorical crossentropy, dengan learning rate 0,0001, serta metrik evaluasi berupa
akurasi. Pelatihan dilakukan selama 50 epoch dengan batch size 32, dan menggu-
nakan beberapa callback untuk meningkatkan efisiensi serta stabilitas model, seperti
EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, TensorBoard, serta Train-
ingTimeCallback yang digunakan untuk mengawasi durasi pelatihan. Pendekatan
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ini diharapkan dapat menghasilkan performa model yang bagus pada data validasi
serta memberikan hasil klasifikasi yang tepat pada gambar kondisi jalan.

3.6 Optimizer
Optimizer digunakan untuk mengurangi nilai loss function serta

meningkatkan akurasi model selama proses pelatihan. Dalam penelitian ini,
digunakan tiga jenis optimizer, yaitu Adaptive Moment Estimation (Adam), Root
Mean Square Propagation (RMSProp) dan Stochastic Gradient Descent (SGD)
yang masing-masing memiliki keunggulan dalam mengatur pembaruan bobot
secara adaptif. Pemilihan dan pengaturan optimizer sangat penting untuk desain
dan implementasi model deep learning karena dapat meningkatkan performa
model dengan mempercepat proses pelatihan dan meningkatkan akurasi prediksi.
Tujuan dari penelitian ini adalah untuk menghasilkan model klasifikasi gambar
yang akurat dan efektif dengan menggabungkan keunggulan dari Adam, RMSProp,
dan SGD.

Selama proses pelatihan, digunakan teknik early stopping dan model check-
point untuk menyimpan model terbaik berdasarkan hasil validasi. Pelatihan di-
lakukan selama 50 epoch hingga model menunjukkan konvergensi atau terjadi pen-
ingkatan error pada data validasi.

3.7 Evaluasi Model
Setelah berbagai percobaan, fase evaluasi model menjadi komponen penting

dari penelitian klasifikasi gambar. Tujuan dari evaluasi ini adalah untuk mengetahui
seberapa baik model mampu mengklasifikasikan gambar baru dengan benar. Confu-
sion matrix adalah alat penting yang digunakan karena memberikan gambaran rin-
ci tentang performa model. Ini memungkinkan analisis kesalahan dilakukan lebih
lanjut untuk menemukan pola kesalahan tertentu, dan berguna untuk menilai dan
memperbaiki arsitektur model, pengaturan hyperparameter, dan strategi augmen-
tasi data. Hasil dari confusion matrix menampilkan Accuracy, Precision, Recall
dan score F1 yang ditampilkan pada classification report serta ROC.

3.8 Tahap Deployment
Tahap deployment merupakan proses implementasi model Convolutional

Neural Network (CNN) dengan performa terbaik ke dalam sistem klasifikasi tingkat
kerusakan jalan berbasis web menggunakan framework Flask. Sistem ini meneri-
ma input berupa citra kondisi jalan, kemudian melakukan tahap preprocessing s-
esuai dengan proses pelatihan model. Selanjutnya, citra tersebut diklasifikasikan ke
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dalam empat kelas tingkat kerusakan jalan, yaitu good, satisfactory, poor, dan very
poor. Hasil prediksi ditampilkan sebagai keluaran sistem untuk membantu proses
identifikasi dan evaluasi kondisi jalan secara otomatis menggunakan gambar digital.

3.9 Tahap Dokumentasi dan Laporan Akhir
Tahap dokumentasi dan penulisan laporan akhir dilakukan agar seluruh

proses dan hasil penelitian dapat disampaikan secara terstruktur. Dokumentasi di-
gunakan untuk mencatat setiap langkah dalam penelitian, mulai dari pengumpulan
data, proses pembelajaran dan pengujian model CNN, hingga penerapan sistem k-
lasifikasi berbasis Flask. Laporan akhir ini merangkum tujuan penelitian, metode
yang digunakan, hasil pengujian, serta analisis kemampuan model yang diperoleh.
Selain itu, laporan ini diharapkan bisa menjadi referensi bagi penelitian berikutnya
dan dasar pengembangan lebih lanjut.
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BAB 5

PENUTUP

5.1 Kesimpulan
Penelitian ini dilaksanakan untuk menerapkan dan membandingkan perfor-

ma beberapa arsitektur Convolutional Neural Network (CNN) dalam mengklasi-
fikasikan tingkat kondisi jalan berbasis citra digital. Seluruh tahapan penelitian,
mulai dari pengumpulan data, preprocessing, pelatihan model, evaluasi performa,
hingga tahap deployment sistem, telah dilakukan secara sistematis sesuai dengan
metodologi yang ditetapkan. Berdasarkan hasil penelitian dan analisis sebelumnya,
maka dapat ditarik beberapa kesimpulan sebagai berikut:

1. Penelitian ini berhasil menerapkan dan membandingkan lima arsitektur
Convolutional Neural Network (CNN), yaitu InceptionV3, DenseNet201,
VGG16, EfficientNetB0, dan ResNet50V2, dengan tiga optimizer yang
berbeda, yaitu Adam, SGD, dan RMSprop, dalam mengklasifikasikan t-
ingkat kondisi jalan berbasis citra digital ke dalam empat kelas, yaitu good,
satisfactory, poor, dan very poor.

2. Berdasarkan hasil evaluasi menggunakan confusion matrix, diperoleh kom-
binasi arsitektur dan optimizer terbaik, yaitu DenseNet201 dengan optimiz-
er RMSprop, yang menghasilkan performa klasifikasi paling optimal dalam
penelitian ini.

3. Hasil penelitian ini memberikan gambaran awal mengenai penerapan k-
lasifikasi citra berbasis CNN sebagai pendekatan digital dalam mendukung
proses identifikasi kondisi jalan. Pendekatan ini berpotensi membantu in-
stansi terkait, seperti Dinas PUPR Kota Pekanbaru, sebagai bahan pertim-
bangan dalam pengambilan keputusan pemeliharaan jalan.

5.2 Saran
Berdasarkan hasil penelitian yang telah dilakukan, beberapa saran dapat di-

ajukan untuk penelitian di masa depan. Dari aspek data, penelitian di masa depan
disarankan untuk memanfaatkan jumlah data yang lebih besar dan lebih beragam,
baik dari segi lokasi pengambilan citra, kondisi pencahayaan, maupun karakteristik
permukaan jalan, sehingga model yang dikembangkan memiliki kemampuan gener-
alisasi yang lebih baik terhadap berbagai kondisi nyata di lapangan. Dalam konteks
pengembangan model, penelitian selanjutnya dapat mengeksplorasi dengan men-
erapkan teknik seperti penyesuaian hyperparameter, metode ensamble, atau pen-
dekatan berbasis segmentasi dan deteksi, seperti YOLO atau semantic segmenta-
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tion, untuk meningkatkan kemampuan mengidentifikasi kondisi kerusakan jalan.
Selain itu, dalam hal implementasi sistem, sistem dapat dikembangkan menjadi sis-
tem real-time yang terintegrasi dengan kamera atau aplikasi mobile. Selain itu, in-
tegrasi antara frontend dan backend dapat ditingkatkan agar sistem dapat digunakan
secara lebih efektif dalam lingkungan operasional.
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