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1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:
a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.
b. Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau.

2, Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau.
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Universitas Islam Negeri Sultan Syarif Kasim Riau adalah terbuka untuk umum, de-
r%’an ketentuan bahwa hak cipta ada pada penulis. Referensi kepustakaan diperke-
nankan dicatat, tetapi pengutipan atau ringkasan hanya dapat dilakukan atas izin
penulis dan harus dilakukan mengikuti kaedah dan kebiasaan ilmiah serta menye-
butkan sumbernya.

i Penggandaan atau penerbitan sebagian atau seluruh Tugas Akhir ini harus
nEmperoleh izin tertulis dari Dekan Fakultas Sains dan Teknologi Universitas Islam
I\@geri Sultan Syarif Kasim Riau. Perpustakaan dapat meminjamkan Tugas Akhir
il untuk anggotanya dengan mengisi nama, tanda peminjaman dan tanggal pinjam
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LEMBAR PERSEMBAHAN
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Dengan menyebut nama Allah Yang Maha Pengasih lagi Maha Penyayang

Assalamu ‘alaikum Warahmatullahi Wabarakatuh
Alhamdulillahi Rabbil ‘Alamiin, segala puji bagi Allah Subhanahu Wa
Yg’ala, Tuhan semesta alam. Sujud syukur hamba persembahkan sebagai bentuk

NIN Mijiw ejdiodeH @

rdia terima kasih atas segala nikmat, kekuatan, dan kemudahan yang telah En-
gKau berikan tanpa kurang sedikitpun, sehingga hamba dapat menyelesaikan tugas
akhir ini. Shalawat beserta salam senantiasa tercurah kepada junjungan kita, N-
abi Muhammad Shallallahu ‘Alaihi Wa Sallam, dengan melafazkan ”Allahumma
Sholli‘ala Sayyidina Muhammad Wa‘ala Ali Sayyidina Muhammad”. Semoga kita
semua senantiasa mendapat syafaat beliau di dunia maupun di akhirat kelak. Aamiin
yva Rabbal ‘aalamiin.

Karya sederhana ini kupersembahkan dengan segenap cinta dan ketulusan
kepada Ibunda tercinta dan Adikku tersayang atas doa, pengorbanan, kasih sayang,
serta bimbingan yang tak pernah terputus. Berkat ridho dan dukungan kalian,
peneliti dapat menuntaskan tanggung jawab akademik dan meraih gelar Sarjana.
Tkigda kata yang mampu membalas jasa-jasa tersebut, selain doa agar Allah SWT
s€hantiasa menganugerahkan kesehatan, kebahagiaan dunia dan akhirat, serta men-
e'lepatkan Ayah dan Ibu di tempat terbaik di sisi-Nya. Gelar ini adalah milik kalian,
sé}ta terima kasih kepada Adikku tercinta atas dukungan dan kebersamaan yang
p%;luh makna.

ng: Kepada Bapak dan Ibu Dosen Program Studi Sistem Informasi Universi-
t%- Islam Negeri Sultan Syarif Kasim Riau yang telah memberikan ilmu penge-
t%uan bermanfaat, pengalaman berharga dan kebaikan yang tulus selama perkulia-
lf?h, saya ucapkan terima kasih banyak dan semoga menjadi amal jariyah. aamiin.

=4 Sahabat-sahabat terdekat yang tidak bisa saya sebutkan satu persatu dan
pgﬁtinya juga teman-teman seperjuangan, terima kasih berkat kalian masa perku-
liEhan menjadi lebih bermakna dan menyenangkan semoga di masa mendatang kita
bzs_,a bertemu lagi dalam keadaan yang lebih baik.

Lt

Wassalamu ‘alaikum Warahmatullahi Wabarakatuh
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KATA PENGANTAR

Assalammu’alaikum wa rahmatullahi wa barakatuh
Alhamdulillahi rabbil ‘alamin, bersyukur kehadirat Allah Subhanahu Wa

YE-’ala atas segala rahmat dan karunia-Nya sehingga peneliti dapat menyelesaikan

MEH @

Tugas Akhir dengan hasil yang baik dan tepat waktu. Shalawat serta salam kita u-
capkan kepada Nabi Muhammad Shallallahu ’Alaihi Wa Sallam dengan mengucap-
kgn Allahumma Sholli °Ala Sayyidina Muhammad Wa "Ala Ali Sayyidina Muham-
mad. Tugas Akhir ini dibuat sebagai salah satu syarat untuk mendapatkan gelar Sar-
j%a Komputer di Program Studi Sistem Informasi Universitas Islam Negeri Sultan
Sg_?arif Kasim Riau.

2 Pada penelitian Tugas Akhir ini, banyak pihak yang sudah berkontribusi,
membantu serta mendukung peneliti baik berupa materi, moril, dan motivasi.

AJ
Peneliti ingin mengucapkan banyak terima kasih kepada:
=

1. Ibu Prof. Dr. Hj. Leny Nofianti, MS, SE., M.Si., Ak., CA sebagai Rektor
Universitas Islam Negeri Sultan Syarif Kasim Riau.

2. Ibu Dr. Yuslenita Muda, S.Si., M.Sc sebagai Dekan Fakultas Sains dan
Teknologi.

3. Ibu Angraini, S.Kom., M.Eng., Ph.D sebagai Ketua Program Studi Sistem
Informasi.

4. Ibu Dr. Rice Novita, S.Kom., M.Kom sebagai Sekretaris Program Studi
Sistem Informasi sekaligus Dosen Penguji I yang telah meluangkan waktu
untuk memberikan arahan, masukan, dan saran yang membangun dalam
proses evaluasi, sehingga Tugas Akhir ini dapat tersusun dengan lebih baik

dan sistematis

=

Bapak Muhammad Jazman, S.Kom., M.Infosys sebagai Kepala Laboratori-
um Program Studi Sistem Informasi.
Bapak Saide, S.Kom., M.Kom., M.LM., Ph.D sebagai Dosen Pembimbing

Akademik yang telah memberikan arahan, masukan, dan motivasi selama

5

masa perkuliahan. Beliau juga menjadi salah satu sosok yang pertama kali

AJISI3ATU[] JTWE[S] 2)B}S

membuka wawasan peneliti terhadap berbagai ilmu dan cara berpikir baru,
sehingga menumbuhkan semangat belajar, rasa ingin tahu, serta keberanian

peneliti untuk terus berkembang secara akademik.

~

Bapak Mustakim, ST., M.Kom sebagai Dosen Pembimbing peneliti yang

telah banyak meluangkan waktu dalam memberikan arahan, masukan,

nery wisey] jiredg uejing jo

saran, nasihat, dan motivasi kepada peneliti dalam penyelesaian Tugas
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Akhir ini. Dengan sikap yang rendah hati dan penuh kesabaran, beliau
senantiasa membimbing peneliti dalam memahami proses penelitian serta
penulisan karya ilmiah, yang menjadi pengalaman dan bekal berharga bagi
peneliti dalam perjalanan akademik.

Bapak Syaifullah, SE., M.Sc., Ph.D sebagai Ketua Sidang yang telah melu-
angkan waktu serta memberikan arahan dan nasihat kepada peneliti dalam
penyelesaian Tugas Akhir ini.

Bapak Inggih Permana, ST., M.Kom sebagai Dosen Penguji 2 peneliti yang
telah banyak meluangkan dalam waktu memberikan arahan, masukan, dan
saran yang membangun dalam penyelesaian Tugas Akhir ini

Bapak dan Ibu Dosen Program Studi Sistem Informasi atas segala ilmu
dan pengalaman berharga yang telah diberikan kepada peneliti selama masa
perkuliahan.

Kepada Cinta pertamaku, Ayahanda Rahmad, A.Md peneliti sangat bert-
erima kasih sudah bekerja keras hingga bisa menguliahkan anak pertama
mu ini. Meskipun beliau yang awalnya tidak yakin dengan dirinya untuk
menguliahkan anaknya pertamanya, terimakasih sudah selalu memberikan
motivasi, dukungan dan mendidik peneliti hingga peneliti mampu menye-
lesaikan studi ini hingga sarjana. Terima kasih, Ayah. Gadis kecilmu kini
telah tumbuh dewasa dan siap melangkah untuk meraih mimpi-mimpi yang
lebih tinggi.

Kepada pintu surgaku, Ibunda tercinta Epi Ratmiza, peneliti mengucapkan
terima kasih yang tak terhingga atas peran, kasih sayang, dan doa yang
tidak pernah terputus dalam proses penyelesaian studi ini. Beliau senantiasa
memberikan dukungan, semangat, serta doa yang tulus, yang menjadi keku-
atan bagi peneliti dalam menjalani kerasnya perjalanan hidup. Meskipun
beliau tidak berkesempatan mengenyam pendidikan hingga bangku perku-
liahan, namun semangat, motivasi, dan doa yang selalu terselip di setiap
sujudnya menjadi bekal terbesar bagi peneliti untuk terus berjuang menem-
puh pendidikan hingga meraih gelar sarjana. Terima kasih, Ibu. Atas berkat
dan ridhomu, anak perempuan pertamamu yang selama ini dituntut untuk
selalu kuat dan tegar, kini telah mampu menyelesaikan studi dan meraih
gelar Sarjana Komputer. Ibu adalah pengingat, penguat, dan sumber keku-
atan terbesar dalam hidup peneliti.

Kepada Adikku, Bintang Ikhram Anrahvi, terima kasih atas dukungan dan

kebersamaan yang tidak selalu diungkapkan dengan kata-kata, namun selalu

viii
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terasa dan berarti bagi peneliti.

Kepada Nenek Rahma, peneliti mengucapkan terima kasih yang tulus
atas doa, perhatian, dan dukungan yang senantiasa diberikan selama pros-
es penyelesaian studi ini. Meskipun tidak selalu diungkapkan melalui
kata-kata, dukungan beliau, baik secara moral maupun materi, menjadi
bagian penting yang menguatkan peneliti hingga mampu menyelesaikan
pendidikan sampai jenjang sarjana.

Kepada Kak Nisa, sepupu yang telah peneliti anggap sebagai kakak sekali-
gus panutan, peneliti mengucapkan terima kasih yang tulus atas perhatian,
dukungan, dan bantuan yang tidak pernah terputus sejak awal perjalanan
pendidikan peneliti. Sejak proses persiapan hingga pelaksanaan ujian ma-
suk perguruan tinggi, hingga masa perkuliahan dan kehidupan di peran-
tauan, beliau senantiasa hadir memberikan dukungan dan tempat berbag-
i. Kepedulian serta pendampingan yang diberikan menjadi penguat bagi
peneliti dalam menjalani perjalanan ini hingga mampu menyelesaikan stu-
di. Terimakasih mama syila.

Terimakasih kepada keluarga besar Nenek Rahma yang selalu memberikan
support kepada peneliti.

Kepada Ayah Amir, peneliti mengucapkan terima kasih atas kepedulian,
bantuan, serta nasihat dan motivasi yang diberikan sejak awal perkuliahan,
yang menjadi dukungan berarti bagi peneliti hingga dapat menyelesaikan
studi ini.

Kepada Stevani, Aulia, Novila, Febbi, Irma, Eser, Rahmanur, dan Amel
yang telah menjadi teman peneliti sejak awal perkuliahan, terima kasih atas
kebersamaan dan dukungan yang berarti dalam perjalanan akademik hingga
peneliti mampu menyelesaikan Tugas Akhir ini.

Kepada teman-teman SMP peneliti, Dayang, Alya, Esah, Jasmin, Angel,
dan Mela terima kasih atas kebersamaan dan dukungan yang masih terjalin
hingga saat ini.

Terima kasih kepada kakak, abang serta teman seangkatan, seperbimbingan
yang telah banyak memberikan saran, serta dukungan kepada peneliti dalam
penyelesaian Tugas Akhir ini.

Kepada Teman-teman Sistem Informasi Angkatan 2022 terkhusus teman
seperjuangan di Kelas B yang selalu mendukung, berbagi informasi, dan
membantu peneliti dalam menjalankan masa perkuliahan.

Peneliti menyampaikan terima kasih kepada keluarga besar Puzzle Research
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Data Technology (Predatech) yang telah menjadi ruang bertumbuh bag-
1 peneliti dalam mengasah minat dan bakat serta memberikan kepercayaan
sebagai bendahara umum. Kebersamaan, dukungan, dan kerja sama yang
terjalin menjadi pengalaman berharga yang sangat berarti dalam perjalanan
akademik dan profesional peneliti.

Terakhir, peneliti ingin menyampaikan rasa terimakasih yang mendalam
kepada diri sendiri, Rifka Anrahvi. Terimakasih telah bertahan sejauh in-
1. Untuk setiap malam yang dihabiskan dalam kelelahan, setiap pagi yang
disambut dengan keraguan namun tetap dijalani, serta setiap ketakutan yang
berhasil dilawan dengan keberanian. Terimakasih kepada hati yang tetap
ikhlas, meski tidak semua hal berjalan sesuai harapan. Terimakasih kepada
raga yang terus melangkah, meski lelah sering tak terlihat. Peneliti bangga
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ABSTRAK

Kondisi jalan yang baik merupakan faktor penting dalam memastikan keselamatan, kenyamanan,
dan aktivitas ekonomi masyarakat. Identifikasi kondisi jalan di lapangan masih sebagian besar di-
lakukan secara manual, sehingga membutuhkan waktu dan biaya yang besar. Penelitian ini bertujuan
untuk menerapkan serta membandingkan performa beberapa arsitektur Convolutional Neural Net-
work (CNN) dalam mengklasifikasikan kondisi jalan berdasarkan citra digital ke dalam empat kelas,
y@_}u good, satisfactory, poor, dan very poor. Penelitian ini menggunakan lima arsitektur CNN,
yaitu InceptionV3, DenseNet201, VGG16, EfficientNetB0, dan ResNet50V2, dengan tiga optimiz-
e;‘,; yaitu Adam, SGD, dan RMSprop. Dataset yang digunakan berjumlah 2.074 data citra, yang
beEsumber dari dataset publik Kaggle dan digunakan sebagai data pelatihan serta pengujian mod-
eE Eksperimen dilakukan melalui tiga skenario, meliputi tanpa augmentasi dan tanpa preprocessing
iput, tanpa augmentasi dengan preprocessing input, serta dengan augmentasi dan preprocessing
iput. Bvaluasi performa model dilakukan menggunakan metrik akurasi, serta analisis confusion
mgtrix, classification report, dan kurva ROC-AUC. Hasil penelitian menunjukkan bahwa arsitektur
D@nseNet201 dengan optimizer RMSprop dan preprocessing input mencapai performa terbaik de-
n@n tingkat akurasi sebesar 94,31%. Model terbaik selanjutnya diimplementasikan ke dalam sistem
bL%%basis web sebagai bentuk penerapan praktis. Penelitian ini menunjukkan bahwa metode CNN e-
fektif untuk klasifikasi kondisi jalan multikelas dan berpotensi untuk mendukung sistem pemantauan
irg;astruktur jalan berbasis citra.

I'{i‘ta Kunci: Convolutional Neural Network, deep learning, klasifikasi citra, kondisi jalan, transfer
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ABSTRACT

Good road conditions are a critical factor in ensuring public safety, travel comfort, and economic
activities. The identification of road conditions in the field is still largely conducted manually,
resulting in significant time and cost requirements. This study aims to implement and compare
the performance of several Convolutional Neural Network (CNN) architectures in classifying
road conditions based on digital images into four classes, namely good, satisfactory, poor, and
very poor. This research employs five CNN architectures, namely InceptionV3, DenseNet201,
VGGI6, EfficientNetB0O, and ResNet50V2, using three optimization algorithms: Adam, SGD, and
RMSprop. The dataset consists of 2,074 image samples, sourced from the public Kaggle dataset
ag‘_d used as training and testing data for the model. Experiments were conducted under three
s{!;narios: without data augmentation and without input preprocessing, without data augmentation
bidt. with input preprocessing, and with both data augmentation and input preprocessing. Model
pgformance was evaluated using accuracy as the primary metric, along with confusion matrix
awralysis, classification reports, and ROC-AUC curves. The experimental results indicate that the
@zseNetZO] architecture with the RMSprop optimizer and input preprocessing achieved the best
paformance, attaining an accuracy of 94.31%. The best-performing model was subsequently
irﬁ)lemented into a web-based system as a practical application. Overall, this study demonstrates
t};_t CNN-based methods are effective for multi-class road condition classification and have strong
phé:tential to support image-based road infrastructure monitoring systems.

eywords: convolutional neural network, deep learning, image classification, road condition,

transfer learning
—
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BAB 1
PENDAHULUAN

Latar Belakang
Kehidupan sehari-hari masyarakat sangat bergantung pada infrastruktur,

1dioeH @

khususnya jaringan jalan. Infrastruktur sangat penting bagi pertumbuhan sebuah ne-
ggra karena berperan sebagai dasar yang mendukung kelancaran berbagai kegiatan
ek?é)nomi dan sosial serta meningkatkan mobilitas (Swain dan Tripathy, 2024). Kon-
disi jalan yang baik sangat penting untuk pertumbuhan ekonomi dan peningkatan
kénektivitas antar wilayah. Namun, kerusakan seperti retakan dan lubang yang
dgebabkan oleh cuaca ekstrem, beban kendaraan yang berlebihan, dan kurangnya
pfgmeliharaan sering menyebabkan gangguan distribusi logistik dan meningkatkan
ri%ko kecelakaan. Pemeliharaan jalan di banyak kota sulit, terutama saat kerusakan
meningkat sementara sumber daya dan dana terbatas (Chu dkk., 2023).

& Di Indonesia, khususnya di Provinsi Riau, kerusakan jalan telah menjadi isu
serius. Menurut BPK RI Perwakilan Provinsi Riau (2024) ratusan kilometer jalan
di Pekanbaru mengalami kerusakan parah, berdampak pada kenyamanan dan ke-
selamatan pengguna jalan serta mengganggu aktivitas ekonomi, khususnya Usaha
Mikro, Kecil, dan Menengah (UMKM) dan distribusi logistik (BPK RI Perwakilan
Provinsi Riau, 2024; Julianta dan Putrie, 2025). Merespons hal tersebut, Pemerintah
Kota Pekanbaru telah memulai proses lelang untuk memperbaiki jalan yang rusak
di beberapa kecamatan. Dalam upaya untuk meningkatkan infrastruktur lokal, pros-
ea_}ni direncanakan dimulai pertengahan Juli 2025. Namun, langkah ini belum bisa
m:cncakup semua jalan sekaligus karena terbatasnya dana dan kemampuan peme-
rfﬁ;ah daerah (Pemerintah Kota Pekanbaru, 2025).

:T Di sisi lain, pemantauan kondisi jalan masih dilakukan secara manual, yang
nfm:merlukan waktu, tenaga, dan biaya besar, ini tidak sebanding dengan keter-
bEIasan sumber daya daerah (Sari, Astor, Awaludin, dan Shalabuddin, 2025). Kon-
d@ ini menunjukkan bahwa diperlukan metode pemantauan kondisi jalan yang lebi-
h%epat, efisien, dan mampu menjangkau area yang lebih luas tanpa tergantung pada
Lﬁpeksi manual di lapangan. Untuk memastikan proses deteksi kerusakan berlang-
stting secara konsisten dan secara real-time, diperlukan pendekatan yang otomatis
(g’anyal, Sadhu, dan Jain, 2022). Menggunakan gambar digital menjadi salah sat-
uEpilihan yang mudah diperoleh dan dapat merepresentasikan kondisi permukaan
qu:}an secara gambaran visual (Guo, Tian, Li, dan Sui, 2024). Namun, karena jumlah

'._.-d_u . . P .
data yang besar dan variasi bentuk kerusakan yang kompleks, analisis citra mem-
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butuhkan metode komputasi yang dapat mengenali pola visual secara otomatis dan
aﬁlrat (W. Wang dkk., 2025). Variasi kerusakan jalan, terutama pada tingkat me-
n%ngah, sering memiliki perbedaan visual yang halus. Hal ini menyulitkan proses
n}?ngenali kerusakan tersebut jika dilakukan secara manual atau cara tradisional
(#onathan Estilong, 2025). Karena itu, pendekatan berbasis pola visual yang men-
dalam justru semakin penting (Chai, Zeng, Li, dan Ngai, 2021).

i Seiring kemajuan teknologi, pendekatan deep learning khususnya Convolu-
ttenal Neural Network (CNN), semakin diandalkan dalam menganalisis citra digital
untuk mendeteksi kerusakan jalan secara cepat dan presisi. Selain memungkinkan
paatihan end-to-end, CNN memiliki performa yang lebih baik dibandingkan de-
ngjan metode konvensional dan metode machine learning lainnya (D. R. Chen dan
Cgl:jriu, 2023; Jakubec, Lieskovska, Bucko, dan Zabovskd, 2023). CNN dapat di-
g;jlakan untuk mendeteksi kerusakan jalan seperti lubang, terutama di genangan
amr yang tertutup. Kekurangan sumber daya manusia membuat pendekatan otomatis
bgrbasis CNN dapat membantu deteksi dini (Chun dan Ryu, 2019; Denaro dan Lim,
2025)

Berbagai studi sebelumnya telah menunjukkan efektivitas CNN dalam klasi-
fikasi kerusakan jalan dengan hasil yang menjanjikan. Menurut penelitian Arafin,
Billah, dan Issa (2024) model InceptionV3 dengan optimizer SGD memiliki akurasi
91% dalam klasifikasi cacat beton, sedangkan Adam lebih optimal untuk segmen-
tasi retakan Arafin dkk. (2024). Matarneh, Elghaish, Pour Rahimian, Abdellate-
f, dan Abrishami (2024) mengevaluasi berbagai arsitektur CNN dan menemukan
bghwa DenseNet201 menunjukkan performa klasifikasi yang sangat baik, dengan
nﬂai Fl-score sebesar 98,73% serta tingkat akurasi yang tinggi (Matarneh dkk.,
28,24). Selanjutnya Swain dan Tripathy (2024), menunjukkan bahwa penerapan C-
NEV berbasis VGG-16 mampu mencapai akurasi hingga 97,3%, dan meningkat hing-
g§-99,23% dengan pendekatan transfer learning pada deteksi lubang jalan (Swain
dan Tripathy, 2024). Sementara itu, Chaudhary dan Verma (2024) mengusulkan
pénggunaan EfficientNet-B0 sebagai arsitektur CNN yang ringan dan efisien, yang
nﬁampu mencapai tingkat akurasi di atas 96% dalam klasifikasi permukaan jalan, se-
hﬁ*igga berpotensi untuk diterapkan pada sistem berbasis aplikasi dengan kebutuhan
k8mputasi yang lebih rendah (Chaudhary dan Verma, 2024).

E’ Banyak penelitian sebelumnya telah menunjukkan keefektifan CNN dalam
m'_endeteks1 kerusakan jalan, namun sebagian penelitian hanya membahas beberapa
Jcmls kerusakan tertentu, seperti crack dan spalling (Arafin dkk., 2024), tiga jenis re-
ta*-k (Matarneh dkk., 2024), atau lubang jalan (Swain dan Tripathy, 2024). Selain itu

NEIY WISEY Jia
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beberapa studi hanya memakai satu arsitektur CNN, sehingga perbandingan mod-
e@urang komprehensif (Chaudhary dan Verma, 2024; Swain dan Tripathy, 2024).
%berapa dataset yang digunakan tidak mencerminkan kondisi umum permukaan
jzgan karena berasal dari lingkungan terkontrol atau berfokus pada material tertentu
seperti beton (Arafin dkk., 2024).

o Meskipun demikian, variasi tingkat kerusakan jalan di dunia nyata tetap
n%merlukan penilaian yang lebih mendalam agar lembaga terkait dapat mengambil
keputusan yang lebih baik. Selain temuan dalam literatur, kondisi nyata di lapangan
jga memperlihatkan kendala serupa. Wawancara dengan Dinas Pekerjaan Umum
dan Perumahan Rakyat (PUPR) Pekanbaru menunjukkan bahwa evaluasi kondisi
j;inan di lapangan masih mengalami hambatan karena faktor cuaca, pencahayaan,
d:'n perbedaan karakteristik kerusakan di setiap lokasi. Meskipun kerusakan dapat
d{';amati secara langsung, penyelarasan penilaian antar lokasi masih menjadi tanta-
ngan. Penelitian ini dilaksanakan setelah peneliti memperoleh izin penelitian dar-
i Tnstansi terkait, yaitu Dinas PUPR. Surat izin penelitian tersebut disajikan pada
Lampiran A.

Berdasarkan permasalahan tersebut, penelitian ini berfokus pada klasifikasi
tingkat kerusakan jalan menggunakan gambar digital ke dalam empat kategori, yaitu
good, satisfactory, poor, dan very poor. Untuk mendapatkan model dengan perfor-
ma terbaik, penelitian ini juga membandingkan lima arsitektur CNN yang telah
terbukti efektif pada penelitian sebelumnya yaitu InceptionV3, DenseNet201, VG-
G16, EfficientNetB0, ResNet50V2. Setiap model diuji dengan tiga jenis optimizer
(Adam, SGD, dan RMSprop) untuk menemukan kombinasi yang paling optimal.
P%;:ndekatan ini diharapkan dapat berkontribusi pada identifikasi digital kondisi jalan
dan berfungsi sebagai acuan awal bagi lembaga terkait dalam pengambilan keputu-

w

sg?l.

lg Perumusan Masalah
ET_ Berdasarkan latar belakang yang telah dipaparkan, rumusan masalah dalam
-

pEnelitian ini adalah bagaimana performa lima arsitektur CNN, yaitu InceptionV3,

[T_gnseNetZOl, VGGI16, EfficientNetBO, ResNet50V2 dalam mengklasifikasikan

Eéndisi jalan berdasarkan citra digital ke dalam kategori good, satisfactory, poor,

dﬁ very poor, serta arsitektur mana yang menghasilkan performa terbaik ber-

dgsarkan metrik evaluasi seperti akurasi, precision, recall, F1-score, dan confusion
=¥ ]

ntrix.
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1.3 Batasan Masalah

®

Dalam melakukan penelitian, penting untuk menetapkan batasan-batasan

n%salah agar tetap terfokus pada rencana yang telah ditetapkan. Oleh karena itu,

b(%f[asan masalah pada penelitian ini yaitu:

ol

e

-
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Penelitian ini menggunakan lima arsitektur CNN yaitu InceptionV3,
DenseNet201, VGG16, EfficientNetBO, ResNet50V2 serta menggunakan
optimizer Adam, SGD dan RMSprop. Perbandingan antar arsitektur di-
lakukan dari segi performa klasifikasi citra kondisi jalan.

Proses pelatihan model dilakukan dengan metode Hold-Out dalam per-
bandingan 80:20. Teknik augmentasi data digunakan, yaitu rotasi acak hing-
ga 30 derajat, shear hingga 15%, zoom hingga 15%, serta flipping untuk
meningkatkan variasi dan keberagaman data pelatihan.

Evaluasi dari model menggunakan confusion matrix yang terdiri dari accu-
racy, precision, recall, dan F-1 score serta ROC, sebagai dasar perbandingan
performa antar model.

Dataset yang digunakan dalam penelitian ini berasal dari dataset ter-
buka Kaggle dengan nama Road Damage Classification and Assess-
ment, dengan jumlah sebanyak 2.074 data citra, yang terdiri dar-
i empat kategori tingkat kerusakan jalan, yaitu good, satisfactory,
poor, dan very poor sesuai dengan tingkat kerusakannya dengan link
dataset yaitu https://www.kaggle.com/datasets/prudhvignv/road-damage-
classification-and-assessment dataset ini digunakan sebagai data pelatihan
model CNN.

Tools yang digunakan adalah Google Colab, Library TensorFlow, frame-
work Flask dan Keras

Implementasi sistem dilakukan menggunakan model terbaik hasil evaluasi

untuk mengklasifikasikan citra kondisi jalan berbasis web.

Tujuan

Tujuan dari penelitian ini adalah untuk:

Menerapkan dan membandingkan performa lima arsitektur CNN yaitu In-
ceptionV3, DenseNet201, VGG16, EfficientNetB0O, ResNet50V2, dengan
menggunakan optimzer Adam, SGD, dan RMSProp dalam mengklasi-
fikasikan tingkat kerusakan jalan berbasis citra digital ke dalam kategori
good, satisfactory, poor, dan very poor serta menentukan kombinasi arsitek-

tur CNN dan optimizer yang menghasilkan performa terbaik berdasarkan


https://www.kaggle.com/datasets/prudhvignv/road-damage-classification-and-assessment
https://www.kaggle.com/datasets/prudhvignv/road-damage-classification-and-assessment
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Confusion Matrix.

>

Memberikan gambaran awal tentang penerapan klasifikasi citra untuk men-
dukung identifikasi kondisi jalan secara digital, sehingga dapat membantu
instansi terkait, seperti Dinas PUPR Pekanbaru, dalam mengambil keputu-

san terkait pemeliharaan jalan.

Manfaat

Manfaat dari penelitian ini adalah:

—

Memberikan gambaran komparatif performa lima arsitektur CNN dalam k-

lasifikasi multikelas kondisi jalan berbasis citra.

>

Menjadi referensi dalam pengembangan model klasifikasi jalan yang lebih

akurat untuk keperluan pemetaan atau monitoring infrastruktur.

8]

Mendukung instansi seperti Dinas PUPR dalam pengambilan keputusan tek-

nis dengan menyediakan informasi awal mengenai kondisi jalan melalui

neiry exysnsg Nin A ILeIdIo deH @

pendekatan berbasis citra digital.

1.6 Sistematika Penulisan

Adapun sistematika penulisan dari laporan Tugas Akhir ini yaitu:

BAB 1. PENDAHULUAN

Pada bab ini akan membahas latar belakang masalah, rumusan masalah,
batasan masalah, tujuan penelitian, manfaat penelitian, dan sistematika penulisan.

BAB II. LANDASAN TEORI

Bab ini akan menguraikan secara teoritis konsep-konsep dan teori-teori yang
mgndukung penelitian tugas akhir ini yang berasal dari jurnal ilmiah, prosiding,

bgku serta studi kepustakaan yang digunakan sebagai tinjauan dalam pembuatan

Tﬁ.gas Akhir ini.

;T' BAB III. METODOLOGI PENELITIAN

E- Bab ini memaparkan mengenai tentang alur penelitian peneliti mulai dari
pehgumpulan data hingga hasil prediksi.

5' BAB IV. HASIL DAN ANALISIS

E Pada bab ini memaparkan mengenai hasil yang merupakan implementasi

dari algoritma CNN dengan beberapa arsitektur dalam klasifikasi gambar tingkat
k&rusakan jalan.
BAB V. PENUTUP

Dalam bab ini, disajikan rangkuman dari kesimpulan yang dihasilkan dar-

Suelng

i gkugas Akhir yang dilakukan, serta saran untuk penelitian lanjutan berdasarkan

A

témuan yang telah diperoleh dalam penelitian ini.

neny wisey| jrig;
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BAB 2
LANDASAN TEORI

Kerusakan Jalan

dioSieH @

Kerusakan jalan adalah kondisi di mana struktur atau fungsi permukaan

}

jﬂl}an mengalami perubahan dari kondisi semula. Menurut Pedoman Perencanaan
Perkerasan Jalan Raya Nomor 01/PR/M/2012 (Bina Marga), kerusakan jalan
di_deﬁnisikan sebagai tanda-tanda atau kondisi yang menunjukkan turunnya kua-
lftas permukaan jalan. Kerusakan tersebut bisa berupa retakan, perubahan bentuk,
lubang, atau pengelupasan lapisan permukaan (Kementerian Pekerjaan Umum dan
ngrumahan Rakyat Republik Indonesia, 2012).

= Kementerian Pekerjaan Umum dan Perumahan Rakyat (PUPR) telah men-
g{%uarkan Surat Edaran Nomor 12/SE/Db/2024 tentang Pedoman Leger Jalan un-
tak menjelaskan parameter kondisi jalan yang digunakan Surface Distress Index
(§DI) dan Pavement Condition Index (PCI) untuk menilai tingkat kerusakan terse-
but. SDI menunjukkan tingkat kerusakan secara cepat di lapangan dengan meng-
gunakan hasil pengamatan visual terhadap jenis dan tingkat kerusakan pada per-
mukaan jalan. SDI dihitung berdasarkan jumlah lubang per 100 meter panjang
jalan, kedalaman alur roda (rutting), dan retak permukaan (luas dan lebar rata-rata
retak) (Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2024)

Sementara itu, Pavement Condition Index (PCI) adalah angka yang digu-
nakan untuk menunjukkan kondisi permukaan jalan. Angka ini didasarkan pa-
d&pengamatan visual terhadap jenis, tingkat kerusakan, dan sebaran masalah pa-
dg;’: jalan tersebut (sesuai dengan Petunjuk Penentuan Indeks Kondisi Perkerasan
(ﬁ{P) dalam Surat Edaran Menteri Pekerjaan Umum dan Perumahan Rakyat Nomor
1578E/M/2016 tentang penerapan 10 pedoman di bidang jalan dan jembatan, tang-
g%l 11 Oktober 2016) (Kementerian Pekerjaan Umum dan Perumahan Rakyat,
2916). Tabel 2.1 berikut menunjukkan penggunaan parameter ini untuk memba-

gEtingkat kerusakan permukaan jalan ke dalam beberapa kategori.

Tabel 2.1. Kategori Kondisi Berdasarkan Nilai SDI

-

nery wisey] jireAg uejng jo A31s1a

Nilai SDI Kategori Kondisi
<50 Baik

50-100 Sedang

100-150 Rusak Ringan

> 150 Rusak Berat
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Kategori kondisi jalan pada metode Surface Distress Index (SDI) yang di-
g‘%akan oleh Kementerian Pekerjaan Umum dan Perumahan Rakyat secara kon-
sngtual memiliki kesesuaian dengan pembagian kelas kondisi jalan pada dataset
R@zd Damage Classification and Assessment, yaitu good, satisfactory, poor, dan
very poor. Kesamaan tersebut terletak pada tujuan pengelompokan kondisi jalan
berdasarkan tingkat kerusakan permukaan yang dapat diamati secara visual. Na-
mtin demikian, penelitian ini tidak melakukan perhitungan nilai SDI secara lang-
sélg, melainkan menggunakan pendekatan klasifikasi visual berbasis citra digital
untuk mengelompokkan tingkat kondisi jalan.

< Dalam konteks penelitian ini, istilah rusak mengacu pada kondisi per-
mukaan jalan yang menunjukkan adanya kerusakan yang dapat diamati secara vi-
swal melalui citra digital. Kerusakan tersebut meliputi indikasi seperti retakan yang
tf;}ihat jelas, lubang pada permukaan jalan, pengelupasan lapisan perkerasan, atau
ketidakteraturan permukaan jalan yang berpotensi mengganggu fungsi dan kenya-
manan pengguna jalan (Kusumaningrum, Madenda, Karmilasari, dan Nahdalina,
2022). Pengelompokan kondisi jalan ke dalam kategori baik, sedang, rusak ringan,
dan rusak berat didasarkan pada tingkat keparahan kerusakan permukaan yang tam-
pak secara visual, bukan pada hasil pengukuran struktural jalan atau perhitungan
teknis secara langsung.

Penyebab utama kerusakan jalan antara lain kemacetan lalu lintas yang
berlebihan, kualitas bangunan atau bahan yang kurang baik, cuaca yang ekstrem,
serta kurangnya perawatan. Metode pemeriksaan secara manual membutuhkan
waktu dan biaya yang besar serta rentan terhadap penilaian subjektif di lapangan
(ﬁ_:ementerian Pekerjaan Umum, 2011; Kementerian Pekerjaan Umum dan Peruma-
han Rakyat Republik Indonesia, 2012). Oleh karena itu, penggunaan gambar dig-
it‘%l dan algoritma Convolutional Neural Network (CNN) sangat diperlukan untuk

-
rrgengklasiﬁkasikan kerusakan jalan secara otomatis dan lebih efisien.

2% Studi Kasus: Klasifikasi Citra Kerusakan Jalan

E Klasifikasi citra kerusakan jalan adalah cara penting untuk memantau kon-
disi jalan, terutama untuk membantu proses inspeksi jalan secara otomatis meng-
gLﬁnakan teknologi penglihatan komputer dan pembelajaran mesin. Dengan me-
nﬁnfaatkan foto dari kamera kendaraan atau smartphone, berbagai jenis kerusakan
p;grmukaan seperti retak longitudinal, retak transversal, retak alligator, serta lubang
jz?lan bisa terdeteksi dengan efisien (Kulambayev dkk., 2022).

NEIY WISEY JIIeAg

Sebagai bagian dari proses pengolahan citra digital, klasifikasi kerusakan
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jalan dilakukan dengan menggunakan algoritma Convolutional Neural Network (C-
1\@1) CNN mampu mengambil ciri-ciri dari gambar permukaan jalan sehingga bisa
ng;ngelompokkan kondisi jalan ke dalam berbagai tingkat kerusakan berdasarkan
dgta visual yang didapat. Jenis kerusakan yang biasanya diteliti mencakup retakan,
pelepasan permukaan, retakan di tepi jalan, hingga lubang jalan. Jika diband-
iﬁrékan dengan metode manual atau pendekatan tradisional, CNN terbukti mem-
bgrikan hasil yang lebih akurat dalam mengidentifikasi jenis dan tingkat kerusakan

(Bouhsissin, Assemlali, dan Sael, 2025; Kulambayev dkk., 2022).

=
2.3 Deep Learning

0 Deep learning adalah jenis pembelajaran mesin yang memiliki kemampuan
u;tuk merepresentasikan fitur secara akurat melalui proses representasi non-linear
(;;hmed dkk., 2023). Deep learning memiliki kemampuan untuk secara otoma-
ti§’ mengekstraksi fitur dari data mentah seperti gambar atau sinyal. Ini berbeda
d?:Jngan metode machine learning tradisional yang bergantung pada fitur buatan
(hand-crafted features) (Alzubaidi dkk., 2021). Penelitian Y. Li, Wei, Han, Huang,
dan Wang (2020) telah berhasil dilakukan dalam berbagai tugas, termasuk iden-
tifikasi target, deteksi objek, klasifikasi citra, pemrosesan bahasa alami, dan pen-
genalan suara (Y. Li dkk., 2020). Keuntungan utama dari Deep learning adalah
kemampuannya untuk memproses data yang besar dan kompleks secara efisien dan
meningkatkan akurasi pemrosesan data, menjadikannya alat yang berguna untuk
banyak aplikasi Al, seperti mengklasifikasikan kerusakan jalan (S. Li dan Zhang,
2025).

1S

24 Convolutional Neural Network (CNN)

— Convolutional Neural Network (CNN) adalah model pembelajaran men-

2]

d%[am yang paling representatif untuk pengolahan data citra (X. Zhao dkk., 2024).
@:N adalah jaringan saraf berlapis yang dirancang khusus untuk mengenali dan
ni€ngklasifikasikan gambar, dengan arsitektur yang efisien dalam mengurangi jum-
l?ﬁi parameter dan mempermudah pelatihan, sehingga meningkatkan akurasi klasi-
ﬁ%asi (Y. Li dkk., 2020). CNN dirancang untuk mengolah data seperti gambar de-
né‘éln mengekstraksi fitur secara bertahap melalui konvolusi. Teknik seperti parame-
ték.sharing dan koneksi terbatas membuatnya lebih efisien secara komputasi (Z. Li,
]_g;'ju Yang, Peng, dan Zhou, 2022; Raj dan Kos, 2025). CNN umumnya memiliki
ans1tektur berlapis yang mencakup tahap ekstraksi fitur dan klasifikasi akhir. Gam-
ba-y 2.1 menunjukkan struktur jaringan yang umum, menunjukkan jalan dari input

ggmbar hingga proses klasifikasi.
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mbar 2.1. Arsitektur Convolutional Neural Network (CNN) (Patra dkk., 2021)

Ajiw@1dio ey @

Struktur utama CNN terdiri dari convolutional layer untuk mendeteksi po-
14dokal, pooling layer untuk mengurangi dimensi dan mencegah overfitting, flatten
l@yer untuk mengubah data menjadi vektor, serta fully connected layer untuk meng-
hg;ilkan prediksi akhir. Contohnya, filter 5 X 5 dapat mengekstrak fitur dasar, dan
a{;erage pooling terbukti efektif mempertahankan informasi penting seperti pada k-
l%iﬁkasi kerusakan jalan (Anton, Nissa, Janiati, Cahya, dan Astuti, 2021; W. Wang
dkk., 2025). Fungsi aktivasi yang sering digunakan dalam CNN adalah ReLU, yang
rrilzenj aga nilai positif dan menghilangkan nilai negatif untuk mempercepat pelatihan
dan mencegah vanishing gradient. Untuk mencegah overfitting, digunakan teknik
dropout yang secara acak menonaktifkan neuron saat pelatihan guna meningkatkan
generalisasi model (Salehin dan Kang, 2023). Keunggulan CNN dalam klasifikasi
citra adalah kemampuannya mengekstraksi fitur secara otomatis tanpa rekayasa
manual, serta performanya yang unggul dalam tugas visual seperti klasifikasi, de-
teksi objek, dan segmentasi (X. Zhao dkk., 2024).

2.5 Pengolahan Citra Digital

o Sebelum model pembelajaran mendalam seperti Convolutional Neural Net-
w%rk (CNN) dapat digunakan untuk pelatihan dan prediksi, pengolahan citra digital
adalah tahap awal penting dalam pemrosesan data citra yang meningkatkan kuali-
t% data dan menyesuaikan formatnya (Liu, Soh, dan Lorang, 2021). Prapemros-
egn, atau preprocessing, adalah tahap penting dalam pengolahan gambar. Tahap
ng mencakup penyesuaian ukuran gambar (resizing) agar sesuai dengan arsitektur
GNN, biasanya menjadi 224 x 224 piksel, dan penggunaan padding untuk menjaga
pjij(_)porsi objek. Untuk mempercepat proses pelatihan dan menjaga kestabilan nu-
ﬁfg:rik, normalisasi digunakan, baik dengan membagi intensitas piksel dengan 255
rﬁé‘upun dengan menggunakan standarisasi berbasis nilai rata-rata dan standar de-
Vf-gsi (Krichen, 2023). Teknik augmentasi gambar dapat meningkatkan generalisas-
i dan mengurangi overfitting. Teknik-teknik ini termasuk transformasi geometrik
(tr?gtasi, [fip, zoom, cropping), serta penyesuaian visual (perubahan warna, kecera-
hgn, dan penambahan noise). Teknik ini bertujuan untuk meningkatkan variasi data
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latih agar model lebih sesuai dengan situasi dunia nyata (Shorten dan Khoshgof-
taar, 2019). Preprocessing sangat penting untuk meningkatkan generalisasi model,
ng:!;:ngurangi overfitting, dan mensimulasikan kondisi nyata, terutama dalam situ-
a?; dengan data terbatas, seperti deteksi kerusakan jalan. Selama tahap ini, CNN
dapat belajar dengan lebih baik dan menghasilkan klasifikasi yang lebih akurat (G.-

HE Chen dkk. , 2022).
3

2:6 Klafisikasi Citra Digital

; Klasifikasi citra digital adalah proses pengelompokan gambar berdasarkan
karakteristik visual seperti pola, tekstur, warna, dan bentuk. Meskipun penting
dalam berbagai bidang seperti pengawasan lalu lintas dan deteksi medis, pen-
dekatan konvensional masih terbatas dalam menangani citra kompleks beresolusi
ti;ggi (Solihin, Syarief, Rochman, dan Rachmad, 2023). Proses klasifikasi citra
nﬂnj adi jauh lebih efisien dan akurat berkat kemajuan teknologi pembelajaran men-
d;jlam, terutama dengan munculnya Convolutional Neural Network (CNN). Dengan
kemampuan nya untuk membentuk representasi citra secara hierarki dan semantik,
CNN sangat informatif untuk sistem pengenalan visual. CNN mengekstraksi berba-
gai fitur secara bertahap, mulai dari fitur tingkat rendah seperti tepi dan warna, hing-
ga fitur tingkat tinggi seperti pola atau bentuk kompleks (Z. Q. Zhao, Zheng, Xu,
dan Wu, 2019).

2.7 Preprocessing Input

Preprocessing input adalah analisis awal data sebelum dimasukkan ke
dglam model pembelajaran mendalam atau deep learning. Tujuannya adalah un-
tak meningkatkan kualitas data dan menyesuaikannya dengan kebutuhan algoritma
ygng digunakan (Kim, 2024). Dalam konteks pengolahan citra, preprocessing men-
chkup langkah-langkah seperti menormalisasi nilai piksel, menyesuaikan ukuran
ggmbar, meningkatkan kualitas citra, dan mengurangi noise sebelum citra diproses
leBih lanjut oleh jaringan saraf. Dalam deep learning, preprocessing input dianggap
sa)agai langkah penting dalam pipeline pemodelan karena pemilihan teknik yang
t&)at dapat membantu mempercepat konvergensi, mengurangi tantangan pembe-
lé‘élran, dan meningkatkan kemampuan model untuk generalisasi pada data baru
(Nguyen-Tat, Hung, Nam, dan Ngo, 2025). Sebagai contoh penerapan preprocess-
ir% input dalam transfer learning, Keras/TensorFlow menyediakan fungsi berna-
ma preprocess_input yang dapat digunakan untuk mengekstrak data sebelum dima-
stﬁgkan ke dalam model seperti VGG, ResNet, Inception, dan EfficientNet, fungsi

nv'ﬁ bukanlah model baru atau lapisan tambahan, melainkan bagian dari fase pemros-

10
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esan data (Keras Team, 2024b). Fungsi preprocess_input memastikan bahwa format
dan distribusi piksel citra sesuai dengan konvensi yang digunakan saat model diter-
a.%(an pada dataset ImageNet, sehingga fitur yang telah dipelajari sebelumnya dapat
dfgunakan secara optimal selama proses fine-tuning (TensorFlow Team, 2024).

© Setiap arsitektur CNN memiliki karakteristik preprocessing yang berbeda.
hasalnya, EfficientNet umumnya menerapkan proses rescaling dalam arsitekturnya
@ss-through), sementara arsitektur CNN lainnya, seperti ResNet dan VGG, men-
erapkan pengurangan nilai rata-rata atau saluran warna (Keras Team, 2024a). Be-
berapa penelitian terdahulu menunjukkan bahwa teknik preprocessing, seperti nor-
nfalisasi dan homogenisasi citra, memiliki dampak yang signifikan terhadap per-
fgj“ma transfer learning di domain yang relevan. Oleh karena itu, preprocessing
h;us dipertimbangkan dengan cermat sebagai bagian dari metodologi eksperimen
(gj,ngh, 2023; Ul Huda, Gade, dan Moeslund, 2021).

2{% InceptionV3

InceptionV3 merupakan arsitektur CNN yang dirancang untuk
meningkatkan akurasi pengenalan citra dengan efisiensi komputasi tinggi.
Arsitektur ini menggunakan modul inception, yaitu blok konvolusi paralel dengan
berbagai ukuran kernel untuk menangkap fitur multi-skala (Abd Zaid, Mohammed,
dan Sumari, 2025). GoogLeNet pertama kali memperkenalkan modul ini, yang
memanfaatkan konvolusi 1 x 1 untuk mengurangi dimensi sebelum menerapkan
konvolusi 3 x 3 atau 5 X 5. Ini meningkatkan efisiensi model (Patra dkk., 2021).
InceptionV3 kemudian menggunakan konvolusi faktorisasi untuk mengembangkan
miEtode ini. Ini termasuk memecah kernel 3 x 3 menjadi 1 x 3 dan 3 x 1, dan
n%ngganti kernel 5 x 5 dengan dua lapisan 3 x 33 secara berurutan. Selain itu,
IF_CeptionV?» memiliki klasifikator pendukung yang meningkatkan aliran gradien
d§n mempercepat proses pelatihan (Abd Zaid dkk., 2025). Ukuran input diperbesar
ngnjadi 299 x 299 piksel guna menangkap fitur kompleks (Z. Li dkk., 2022),
dan bagian akhir menggunakan ANN dan fungsi aktivasi softmax untuk klasifikasi
(.ﬁ)shi, Tripathi, Bose, dan Bhardwaj, 2020). Dengan menggunakan pemros-
eg:e_m multi-skala baik di modul utama maupun cabangnya, desain InceptionV3
ﬁfpndukung representasi fitur berdimensi tinggi (Y. Li dkk., 2020). Arsitektur
ugma model InceptionV3 beserta komponen-komponennya ditampilkan pada
G;':mear 2.2.
&
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Gambar 2.2. Arsitektur InceptionV3 (Patra dkk., 2021)

DenseNet201

DenseNet201 adalah varian dari arsitektur Dense Convolutional Network

N yIgw e1dio yeH o

dengan 201 lapisan. Dibangun untuk mengatasi masalah yang sering terjadi pada
CHN dalam, seperti kehilangan gradien, duplikasi fitur, dan jumlah parameter yang
besar. Dengan menghubungkan setiap lapisan ke lapisan sebelumnya, arus infor-
masi dan gradien dapat mengalir dengan lebih efisien (Huang, Liu, van der Maaten,
dan Weinberger, 2018). Arsitektur ini terdiri dari Dense Blocks dan Transition Lay-
e?g, di mana setiap lapisan blok menerima input dari seluruh lapisan sebelumnya.
Ini membantu mengurangi parameter dan overfitting (Zhou dkk., 2024). Transi-
tion layers juga berperan dalam mengatur jumlah saluran dan mengurangi dimensi
spasial.

DenseNet201 efisien secara komputasi karena hanya membutuhkan satu
lapisan fully connected, serta umum digunakan dengan input citra 224 x 224 x
3 dan konvolusi awal 7 x 7 (Apeagyei, Ademolake, dan Adom-Asamoah, 2023).
Dengan berfokus pada aspek konektivitas piksel, fungsi loss yang baru dapat
meningkatkan deteksi gambar pada DenseNet201 sehingga menghasilkan predik-
sifetakan yang lebih koheren dan akurat (Mei, Giil, dan Azim, 2020). Keunggulan
lz%nnya adalah berbagi fitur lapisan, yang mempercepat pelatihan dan memperta-
hankan performa tinggi dengan parameter yang relatif sedikit (Adam, Mohamed,
dgl Ibrahim, 2021). Karena memiliki akses langsung ke citra dan gradien input di
sgﬁap lapisan, DenseNet mengurangi biaya komputasi (Rahman dkk., 2020). Ar-
S;Ektur DenseNet201 secara umum terlihat pada Gambar 2.3, yang menunjukkan
hﬁi)ungan yang padat antar lapisan untuk membantu proses pelatihan yang lebi-
hzqﬁsien dan penggunaan fitur secara maksimal. Pilihan arsitektur yang bijak ini
memudahkan penyebaran dan pembagian fitur di berbagai lapisan. Desain yang sal-
il’?g terhubung ini adalah karakteristik DenseNet201 (Adam dkk., 2021). Arsitektur
ufama DenseNet201 secara umum ditunjukkan pada Gambar 2.3.

12
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E Gambar 2.3. Arsitektur DenseNet201 (X. Zhao dkk., 2024)
w
210 VGGl16
% VGGI16 merupakan arsitektur CNN yang dapat mengekstraksi fitur hierarkis

dari data piksel, menjadikannya arsitektur yang banyak digunakan dalam klasifikasi
ggmbar. Model ini terdiri dari 13 lapisan konvolusional dan 3 fully connected.
Model ini disusun dalam lima blok konvolusi, dengan filter 3 x 3 di setiap akhir
blok dan maksimum penggabungan 2 x 2 di akhir blok (Patra dkk., 2021). VGG16
mampu membuat representasi fitur kompleks dengan aktivasi ReLU dan softmax
untuk klasifikasi akhir. Dalam beberapa situasi tertentu, dua lapisan yang benar-
benar terhubung diganti dengan satu lapisan yang memiliki 256 node untuk keper-
luan deteksi khusus, seperti jalan berlubang (Patra dkk., 2021; Theckedath dan
Sedamkar, 2020). Strukturnya yang cukup dalam namun sederhana membuatnya
stabil, menghindari overfitting dan hilangnya gradien (Priyanka, Lakshmi, Vysh-
navi, Suresha, dan Jipeng, 2025). VGG16 menunjukkan performa lebih baik dari
V}}G19 pada deteksi kerusakan jalan (Yin, Qu, Huang, dan Chen, 2021), serta tetap
akurat meski diterapkan pada dataset kecil (Ichsan, Riyadi, dan Pardede, 2024).
Agsitektur VGG16 secara umum ditunjukkan pada Gambar 2.4.

™
C 2ax224x3 IR, g
= 112 % 112 % 128
oo 56x 56 128 6% 56 % 256 1x 1x 256
- 28 28% 256 28x 28 x512
P 14% 14 % 512 717!512'
: /
wn
: Input  Conv ~ Max Conv Max Conv Max Conv Max Conv Max Full Output
g Pool Pool Pool Poal Pool Connec tion
=4
wn Gambar 2.4. Arsitektur VGG16 (Patra dkk., 2021)
=
ot
o
2d1 EfficientNetB0

EfficientNetBO adalah arsitektur CNN yang bertujuan untuk mencapai

Ag

akurasi tinggi sambil meningkatkan efisiensi komputasi. Model ini menggunakan

13
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pendekatan penskalaan majemuk untuk menyeimbangkan kedalaman, lebar, dan
ré8olusi jaringan, dan menghasilkan performa yang sangat baik dengan jumlah pa-
rg:;:neter dan FLOPS yang jauh lebih rendah dibandingkan dengan CNN konven-
sfg;nal (Chaudhary & Verma, 2024). Arsitekturnya terdiri dari konvolusi awal 3 x 3,
6 blok MBConv, konvolusi 1 x 1, global average pooling, dan klasifikasi akhir.
[;h-tuk stabilitas pelatihan, Swish activation dan batch normalization digunakan (Su
(%1 Wang, 2020). Blok MBConv memiliki modul Squeeze-and-Excitation untuk
mengatur fitur penting dengan cara yang berbeda. Model ini memiliki sekitar 66
jlta parameter, yang membuatnya lebih cepat dan sederhana daripada banyak CN-
I\ﬁainnya (Mirzaei, Mohammed, Sekeroglu, dan Ilhan, 2025). Selain memperluas
jg'jingan, penskalaan parameter yang seimbang membantunya menghindari over-
ﬁ:;fing pada dataset yang lebih kecil (Hassan dkk., 2025). EfficientNetBO cocok
upfuk sistem dengan daya terbatas seperti perangkat mobile dan aplikasi deteksi
jalan karena ringan dan fleksibel (Chaudhary dan Verma, 2024). Model arsitektur
EfficientNetB0 ditunjukkan pada Gambar 2.5.

Input: 224 = 224 = 3

Idx14x= 112

112 112 = 32 Tw T 192
MBConwl, 3= 3
112 = 112 x 16
S Show 24
MBConwh, 3 = 3

Sh = Ghow 24

MBConwh, 5x 5

28 = 28w 40
282 28 x40
MBConws, 3 = 3
28 = 28 = 80
28 = 28 = 80
MBConwh, 3 x 3
28w 28« 80

77w 1280
Global Average
Pooling2D
1= 1280

Softmax

14 = 14 x 112

14 x 14 x 112

Gambar 2.5. Arsitektur EfficientBO
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2.12 ResNet50V2

© ResNet50V?2 adalah modifikasi ResNet50 yang menggunakan metode pre-
aé;[}ivation. Aktivasi dan normalisasi batch dilakukan sebelum konvolusi. Metode i-
nfmempercepat konvergensi model dan membantu mengatasi gradient yang hilang.
Model ini terdiri dari 50 lapisan dan sejumlah blok residual dengan connection skip,
yg‘ng memungkinkan aliran data langsung ke lapisan lebih dalam tanpa kehilang-
aikonteks penting. Ini membuat pelatihan jaringan dalam lebih stabil dan efektif
(Mangeri, Gnana Prakasi, Kanmani, dan Puppala, 2021). ResNet50V2 digunakan
séeara luas dalam berbagai tugas visi komputer karena menawarkan keseimbangan
afitara akurasi dan efisiensi. Dibandingkan dengan versi lain, seperti ResNet18 atau
R?sNethl, ResNet50V2 memiliki kedalaman yang cukup untuk menghasilkan k-
I;Siﬁkasi yang akurat tanpa beban komputasi yang berlebihan. ResNet50V2 dapat
dg'gunakan dengan baik dalam transfer learning dengan bobot pra-latih dari dataset
besar seperti ImageNet. Ini memiliki kemampuan untuk menerima input gambar
dgngan resolusi yang berbeda, mulai dari 224 x 224 piksel hingga 256 x 256 piksel,
tanpa mengurangi ketepatan fitur (Daoud dkk., 2025). Model arsitektur Efficient-

NetBO ditunjukkan pada Gambar 2.6

Gambar 2.6. Arsitektur ResNet50V2 (Hamida dkk., 2023)
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2“5;3 Adaptive Moment Estimation
@

Adaptive Moment Estimation (Adam) adalah algoritma optimasi berbasis

g'fadlent descent yang banyak digunakan dalam pelatthan CNN. Algoritma ini

1L

menggabungkan keunggulan Momentum dan RMSprop untuk mempercepat konver-
gg‘m dan meningkatkan stabilitas pelatihan (Arafin dkk., 2024). Ada dua estimasi
ng)men yang digunakan Adam untuk menyesuaikan laju pembelajaran untuk setiap
pggameter. Ini adalah rata-rata gradien pertama dan kuadrat gradien kedua, yang
kgduanya dihitung dengan eksponensial dari gradien sebelumnya. Metode ini men-
j%a kestabilan pembaruan bobot dan membantu menghindari gradient yang hilang
(Soujanya dan Sitamahalakshmi, 2020). Dalam klasifikasi multikelas, Adam sering
d@unakan sebagai fungsi loss kategoris cross-entropy, keduanya terbukti efektif

ddlam mempercepat pelatihan dan menghasilkan akurasi tinggi (Shamila Ebenezer
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dkk., 2021).
©
ﬁI} my = Bym1 +(1—PB1)g (2.1)
2 vi = Bovi1 + (1 -Ba)g; (2.2)
=
erangan:
Ket g
=
my- rata-rata eksponensial dari gradien pada iterasi ke-¢
=
vi—rata-rata eksponensial dari kuadrat gradien pada iterasi ke-
7
gwonilai gradien pada iterasi ke-7
s
{77 ]
[%‘ parameter peluruhan untuk momen pertama (biasanya mendekati 1, misalnya
A 099)
=
arameter peluruhan untuk momen kedua (biasanya mendekati 1, misalnya
Bz p peluruh k kedua (bi y dekati 1, misalny

0,999)
¢t indeks iterasi atau langkah pelatihan ke-7

2.14 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) adalah algoritma optimasi dasar yang
sering digunakan dalam pelatihan jaringan saraf karena mudah dan efisien un-
tuk data berskala besar. Ia memperbarui parameter model secara iteratif dengan
menggunakan subset acak dari data pelatihan, sehingga hemat memori dan cepat
(ﬁulandari, Sari, Al-sawaff, dan Manickam, 2025). Namun, performanya sensitif
té-!rhadap pemilihan learning rate, nilai yang salah dapat menyebabkan perkemban-
gt_‘% yang lambat atau tidak stabil (Chakroun, Haber, dan Ashby, 2017). Meskipun
V?'a:'r_ian seperti Momentum dan Nesterov telah dikembangkan untuk meningkatkan
p%forma, tetapi algoritma ini masih kurang adaptif dibandingkan dengan Adam
at;a.u AdaMax (Soydaner, 2020). Karena SGD banyak digunakan dalam model pem-
bglajaran mesin, pengembangan algoritma SGD privat sangat penting untuk mengu-
rélgi kebocoran privasi yang diposting oleh gradien (P. Wang, Lei, Ying, dan Zhou,
2024).

¥ 5]

e 1 . .

5 §=— ;VeL(ﬂx(’);e), y\) (2.3)
&

p 0+ 0—¢g8 2.4)
o

-

=]

o

5

- 16
z



AVTH YNN8 NIN

|DU;

‘ney eysng NN Wizl edue) undede ymuag wejep jul sin} eAiey yninjes neje ueibeges yefuegiadwsw uep ueywnwnBusw Buele)qg 'z

b =

‘nery eysng Nin Jelem Buek uebunuaday ueyiBniaw yepn uedinBuad 'q

‘yejesew njens ueneluy neje yuuy vesnuad ‘uesode] ueunsnAuad ‘yeiw) efsey uesiinuad ‘ueyauad ‘ueyipipuad ueBunuaday ymun efuey vedynbusy e

b

Tyt

:18quINs ueyIngaAusiu uep ueywmuesuaw edue) jul sin) eAiey yrnunjas neje ueibegaes dynBuaw Buesejq 'L

Buepun-Buepun 1Bunpuijig e1did yey

Keterangan:

®
grestimasi gradien rata-rata dari fungsi kerugian
N

—
my, ukuran minibatch

L)
Vi turunan (gradien) terhadap parameter 0

L=fungsi kerugian (loss function)
=

fitx\);0) output model untuk input ke-i dengan parameter 0

yé label target untuk data ke-i

=

(2]
B=parameter model
[11]

€ laju pembelajaran (learning rate) pada iterasi ke-k
1]

kcindeks iterasi pelatihan ke-k

2.15 RMSprop

RMSprop adalah algoritma optimasi turunan dari gradient descent yang di-

maksudkan untuk mengatasi penurunan kecepatan belajar yang signifikan, seperti

yang terlihat pada Adagrad. Ia menormalkan pembaruan parameter, mempercepat

konvergensi, dan menjaga stabilitas (Soujanya dan Sitamahalakshmi, 2020). Berbe-

da dari Adagrad, RMSprop mengurangi osilasi dan mempercepat penyatuan arah

pembelajaran dengan menyesuaikan kecepatan pembelajaran untuk setiap parame-

t%' (Soydaner, 2020). Algoritma ini juga berfungsi dengan baik dalam lingkungan

nen-konveks seperti pelatihan jaringan saraf dalam, di mana permukaan kehilangan

fingsi lokal minimal dan kompleks (Z. Li dkk., 2022).
]

nc vi=pvi1+(1-p)g
n

= Awp = ——e——
;_- ' Vi + €8
I@terangan:

o~

w

VE rata-rata eksponensial dari kuadrat gradien pada iterasi ke-

-~

B

faktor peluruhan (decay rate) untuk rata-rata kuadrat gradien

Ag

nilai gradien pada iterasi ke-

oQ
TIE:

nery wisey J

(2.5)

(2.6)
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Aw; perubahan bobot (parameter) pada iterasi ke-¢
@)

nrlaju pembelajaran (learning rate)
o

eﬁonstanta kecil untuk mencegah pembagian dengan nol

L)

t sindeks iterasi pelatihan ke-r

3

2:16 Confussion Matrix

* Confusion Matrix adalah salah satu teknik evaluasi untuk mengklasi-

ﬁgasikan performa berdasarkan benar dan salah. Empat output dihasilkan dari per-

Buepun-Buepun 1Bunpuijig e1did yey

hﬁungan rumus ini yaitu recall, akurasi, presisi, dan tingkat kesalahan. Penilaian
agurasi dan kesalahan item tes menjadi dasar untuk mengevaluasi model klasifikasi
(Bwinnie dkk., 2023). Confusion matrix terdiri dari empat komponen utama, yaitu
trme positive (TP) dan true negative (TN) yang menunjukkan prediksi benar oleh
nit;del, serta false positive (FP) dan false negative (FN) yang menunjukkan prediksi
keliru (Valero-Carreras dkk., 2023). Diagram confusion matrix dapat dilihat pada
Gambar 2.7
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Gambar 2.7. Confusion Matrix (Valero-Carreras dkk., 2023)

Persamaan evaluasi kerja dapat dihitung sebagai berikut (Alzubaidi dkk.,

gng jo

[\
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e
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1. Akurasi = Mengukur tingkat ketepatan model dalam mengklasifikasikan
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seluruh data.

Accuracy = IP+TN (2.7)
YT TPYTN+FP+FN '

2. Specificity = Mengukur kemampuan model dalam mengidentifikasi data

negatif dengan benar.

TN

3. Recall = Mengukur kemampuan model dalam mendeteksi data positif.

TP
Recall = ——— (2.9)
TP+FN

4. Precision = Mengukur ketepatan model dalam memprediksi data positif.

nNely exsng NN AMljlw ejdio yeq @

TP
Precision = —— (2.10)
TP+FP

5. FI1-Score = Merupakan rata-rata harmonik antara presisi dan recall.

Precision x Recall
ERIOOI, 2 - o~ recd @.11)
Precision + Recall

2.17 Framework Flask

Framework Flask adalah kerangka kerja web mikro berbasis bahasa pem-
rograman Python yang fleksibel dan ringan, sehingga banyak digunakan dalam pe-
n&embangan aplikasi dan layanan online berbasis Application Programming Inter-
fa:ce (APID). Sifat minimalis yang dimiliki Flask memberikan para pengembang ke-
séhmpatan untuk menambahkan berbagai library atau extension sesuai dengan kebu-
tllﬁ’ian aplikasi, sehingga framework ini dapat digunakan dalam sistem yang memer-
llzkan tingkat kustomisasi tinggi dan integrasi dengan basis data atau layanan pihak
ketiga (Suraya dan Sholeh, 2022). Framework ini menyediakan fitur inti seper-
ti:.jouting, pengelola request-respons, dan integrasi template yang memungkinkan
p§ngembang untuk membuat aplikasi web secara terstruktur tanpa perlu memeriksa
a&iap komponen sistem dari awal (Walingkas dan Saian, 2023).

2. Selain itu, Flask tidak mengharuskan proyek untuk mengikuti pola atau
sf,_ﬂlktur tertentu, sehingga pengembang dapat menyesuaikan arsitektur aplikasi se-
c§a fleksibel sesuai dengan kompleksitas dan tujuan sistem. Karakteristik tersebut
n@ﬁ_,nun]ukkan bahwa Flask sering digunakan dalam aplikasi machine learning, di

mana kerangka kerja ini berfungsi sebagai backend untuk menghubungkan mod-

19
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el yang telah dikembangkan dengan data pengguna atau sistem eksternal melalui
lé@anan API (Albesher dan Alfayez, 2024; Braganca dan Kho, 2023). Dengan ke-
n@lI;impuannya untuk menangani permintaan pengguna secara efisien dan memfasili-
t%i integrasi berbagai komponen, Flask dianggap sebagai solusi yang cocok untuk
mengimplementasikan sistem cerdas berbasis web dalam penelitian atau aplikasi
déinia nyata (Mani dan Shenoy, 2025).

=

2:18 Penelitian Terdahulu

; Penelitian terdahulu yang dilakukan oleh Arafin dkk. (2024) menyelidiki
klasifikasi dan segmentasi cacat beton, khususnya retakan dan spalling, menggu-
nakan pendekatan deep learning berbasis (CNN). Untuk klasifikasi menggunakan
tiz;a arsitektur CNN yaitu VGG-19, ResNet50, dan InceptionV3. Dataset berjum-
1;1"!-1 4087 citra retakan dan 1100 citra spalling beresolusi 224 x 224 piksel RG-
B_'Eyang dibagi ke dalam data pelatihan, validasi, dan pengujian. Model klasi-
ﬁiasi diuji menggunakan optimizer SGD dan RMSprop dengan variasi learning
rate. Hasil penelitian ini menunjukkan bahwa InceptionV3 dengan RMSprop mem-
berikan performa klasifikasi terbaik dengan akurasi sebesar 91,98% (Arafin dkk.,
2024). Temuan ini menegaskan keunggulan SGD dalam hal generalisasi dan stabil-
itas model serta menunjukkan bahwa pemilihan arsitektur dan optimizer yang tepat
sangat berpengaruh pada performa model.

Swain dan Tripathy (2024) melakukan penelitian tentang deteksi otomatis
lubang jalan dengan menggunakan model VGG-16 yang telah dilatih sebelumnya
sebagai metode transfer learning dan CNN untuk klasifikasi. Dataset terdiri dari
1441 gambar lubang jalan 720 x 720 piksel, yang dibagi menjadi 20% pengujian
dE'n 80% pelatihan. Selama 100 epoch, pelatihan dilakukan menggunakan optimiz-
eP Adam dengan ukuran batch 32, learning rate 0.001. ReLU di seluruh lapisan dan
s?g“tmax di lapisan output digunakan untuk aktivasi. Hasil penelitian menunjukkan
atlhi'l'lrasi klasifikasi sebesar 97,3%, dan dengan teknik transfer learning, model men-
capai akurasi tertinggi 99,23% dengan waktu inferensi 0,008 detik dan ukuran mod-
eﬁhanya 8,33 MB. Studi ini menunjukkan bahwa kombinasi VGG-16 dan CNN
eg_"gktif dalam deteksi lubang jalan secara real-time (Swain dan Tripathy, 2024)

LE Penelitian yang dilakukan oleh Matarneh dkk. (2024) melakukan analisis
té;hadap sepuluh arsitektur CNN yang telah dilatih sebelumnya untuk klasifikasi re-
tzﬁgan pada perkerasan aspal. Arsitektur yang dievaluasi meliputi AlexNet, VGG16,
Vi}G19, GoogleNet, ResNet101, ShuffleNet, InceptionV3, DenseNet201, Dark-
1\5§t19, dan Xception. Dataset yang digunakan mencakup retakan diagonal, longitu-
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dinal, dan horizontal yang diambil dari CrackTree, GAP, dan CRACKS500. Evaluasi
n@del dilakukan menggunakan metrik akurasi, presisi, recall, skor F1, dan spesi-
i%tas. Hasil pengujian awal menunjukkan bahwa DenseNet201 mencapai akurasi
tiﬁggi sebesar 94,12%, diikuti oleh ShuffleNet dengan 94,07% dan ResNet101 de-
ngan 93,83%, sementara arsitektur VGG16 dan VGG19 menunjukkan performa
y%g sedikit lebih rendah. Hal ini menunjukkan bahwa arsitektur CNN dengan
lcé_ldalaman yang lebih besar, seperti DenseNet201, memiliki potensi yang baik un-
tak mengklasifikasikan retakan jalan (Matarneh dkk., 2024).

& Chaudhary dan Verma (2024) mengembangkan sistem klasifikasi per-
nfukaan jalan berbasis citra untuk membantu navigasi tunanetra, dengan meng-
gfﬁnnakan arsitektur Convolutional Neural Network EfficientNetB0. Arsitektur ini
dgr;:)ilih karena ringan, dengan 5,3 juta parameter dan 350 MB serta cocok untuk
p%angkat embedded. Dataset yang digunakan terdiri dari 5.558 citra permukaan
jalan yang diklasifikasikan ke dalam tiga kategori, yaitu aspal, beraspal, dan tidak
bgraspal, dengan pembagian data pelatihan, validasi, dan pengujian. Selain itu,
proses augmentasi seperti flip acak, rotasi, dan zoom digunakan. Pelatihan di-
lakukan menggunakan optimizer Adam dan RMSprop dengan learning rate le-5
dan ukuran batch 10. Hasil penelitian menunjukkan bahwa EfficientNetBO tan-
pa mekanisme tambahan mampu mencapai akurasi sebesar 96,85%, yang menun-
jukkan bahwa arsitektur ini memiliki performa yang baik dalam klasifikasi per-
mukaan jalan berbasis citra (Chaudhary dan Verma, 2024).

Abd Zaid dkk. (2025) menawarkan pendekatan yang menggunakan frans-
Jfeg, learning untuk klasifikasi fitur jalan seperti flyover, bundaran, dan penyeberan-
g&. Metode ini menggunakan arsitektur CNN seperti InceptionV3, ResNet50, Mo-
bfleNetV2, dan VGG19, serta model CNN khusus. Dataset 7.616 gambar 256 x 256
piiiisel dikumpulkan dari MLRSNet dan gambar satelit Google Earth, dengan pem-
bggian data pelatihan, validasi, dan pengujian. InceptionV3 memiliki hasil terbaik
pada validasi (98,9%), dan ResNet50 memiliki hasil terbaik pada pengujian (98,7%)
(ébd Zaid dkk., 2025). Senada dengan penelitian Vaz, Gasparello, de Gouveia,
d;in Senger (2023) melakukan penelitian tentang deteksi kerusakan jalan meng-
gﬁhakan MobileNetV3, ResNet50V2, dan versi modifikasinya, ResNet50V2(M),
dengan dataset grayscale dari sistem LabPavi. Model terbaik, ResNet50V2(M),
n%nunjukkan akurasi rata-rata 80% untuk lubang dan eksudasi, tetapi yang kurang
og'jtimal membedakan subtipe retakan dengan akurasi di bawah 70%. Kedua studi
inkmenegaskan bahwa pemilihan arsitektur dan desain model sangat memengaruhi
ééaktivitas klasifikasi fitur dan kerusakan jalan (Vaz dkk., 2023).
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Sementara itu, Shamila Ebenezer dkk. (2021) mengklasifikasikan berbagai

jédlis kerusakan infrastruktur dengan menggunakan model kelompok yang meng-

gﬁ)ungkan CNN kustom, Xception, dan AlexNet. Dataset yang digunakan terdiri

dfa;_ri 1.176 gambar yang dibagi menjadi 90% data pelatihan dan 10% data pengujian,

dan model yang diusulkan mencapai akurasi validasi sebesar 87,1%. Studi ini me-

ngnjukkan bahwa CNN dapat digunakan untuk mendeteksi kerusakan infrastruktur

jaian, meskipun pendekatan yang digunakan melibatkan penggabungan beberapa

medel (Shamila Ebenezer dkk., 2021). Ringkasan penelitian terdahulu yang rele-

van disajikan pada Tabel 2.2.

Tabel 2.2. Ringkasan Penelitian Terdahulu

NS N

No Peneliti Objek Arsitektur C- Optimizer

Hasil dan Keteran-

ﬁ;; dan Penelitian NN gan

o  Tahun

T Arafin Retakan VGG-19, SGD, RM- Akurasi  tertinggi
dkk. dan s- ResNet50, Sprop, 91,98%  diperoleh
(2024) palling InceptionV3 Adam menggunakan  In-

beton ceptionV3 untuk
klasifikasi dan seg-
mentasi  kerusakan
beton.

2 Swain Lubang VGG-16 Adam Akurasi berkisar an-
dan Tri- jalan tara 97,3% hingga
pathy 99,23% dengan pen-
(2024) dekatan CNN berba-

Matarneh  Retakan DenseNet201,  Optimizer

dkk. jalan aspal  VGGI16, dan standar
(2024) arsitektur
CNN lainnya

AJISIBATU[] JLMIE[S] 2)B]}S
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sis transfer learning.
Akurasi awal
sebesar 94,12%
diperoleh menggu-
nakan DenseNet201
dengan evaluasi
multi-arsitektur
CNN.
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Tabel 2.2 Ringkasan Penelitian Terdahulu (Tabel lanjutan...)

No Peneliti Objek Arsitektur C- Optimizer  Hasil dan Keteran-

QI, dan Penelitian NN gan

: Tahun

14: Chaudhary Permukaan EfficientNet-  Adam, Model CNN ringan

@ dan Ver- jalan BO RMSprop  dan efisien dengan

i ma akurasi lebih dari

= (2024) 96%.

S5 Abd Zaid Fitur jalan  InceptionV3 Optimizer ~ Pendekatan transfer

i dkk. dan ResNet50 standar learning meng-

= (2025) hasilkan akurasi

:;: hingga 98,9% pada

Py klasifikasi  kondisi

o jalan.

% Vaz dkk. Kerusakan = ResNet5S0V2 Optimizer  Akurasi sekitar 80%
(2023) jalan standar dengan  tantangan

pada klasifikasi
subtipe  kerusakan
jalan.

7  Shamila Kerusakan CNN dan X- Optimizer ~ Pendekatan CN-
Ebenez-  infrastruk-  ception standar N menghasilkan
er dkk. tur akurasi sebesar

o (2021) 87,1% untuk deteksi

2 kerusakan jalan.

Ei-. Yusup Kerusakan ~ CNN Optimizer ~ Menggunakan

E‘T Yulianto  jalan aspal standar dataset publik K-

E- dan Ari aggle yang sama

C  Wibowo dengan hasil akurasi

g' (2023) yang bervariasi.

LZ': Berdasarkan ringkasan penelitian terdahulu yang disajikan pada Tabel 2.2,

dgpat disimpulkan bahwa pendekatan Convolutional Neural Network (CNN) telah
bgnyak diterapkan dalam mendeteksi dan mengklasifikasikan kerusakan jalan de-
ngan hasil yang cukup baik. Namun, sebagian besar penelitian masih berfokus
pgﬁla jenis kerusakan tertentu, menggunakan satu arsitektur CNN, atau meman-

f&tkan dataset yang bersifat terkontrol sehingga belum sepenuhnya merepresen-
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tasikan variasi kondisi jalan di lapangan. Selain itu, perbandingan performa bebe-
ré4pa arsitektur CNN dan pengaruh penggunaan optimizer yang berbeda dalam satu
kgj,:rangka penelitian masih terbatas. Oleh karena itu, penelitian ini berfokus pada
kﬁsiﬁkasi tingkat kerusakan jalan berbasis citra digital dengan membandingkan be-
berapa arsitektur CNN, yaitu InceptionV3, DenseNet201, VGG16, EfficientNetBO,
dgn ResNet50V2, serta menggunakan optimizer Adam, SGD, dan RMSprop, guna
n:%mperoleh model yang stabil dan relevan untuk diterapkan pada kondisi nyata.

nely eXsng NIN ¥
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BAB 3
METODOLOGI PENELITIAN

Adapun tahapan metodologi penelitian yang digunakan dapat dilihat pada

ymbar 3.1 berikut.

Tahap Perencanaan

‘ Identifikasi Masalah

‘ Studi Literatur ‘

Data Collection

Split Data

Preprocessing Data

| Resize Image | Momalization | | Augmentation |
CNN Architecture Model
InceptionV3 ‘ ‘ Dens=Met201 ‘ ‘ WGEGE16 | ‘ EfficientMetB0 ‘ | ResMet50Wa2 ‘
Optimizer
| Adam | | RMSProp | | 5GD |

Evaluasi Model
Tahap Deployment

Tahap Dokumentasi dan
Laporan akhir

Gambar 3.1. Metodologi Penelitian

Tahap Perencanaan Penelitian
Identifikasi Masalah

Pada tahap ini, peneliti mengidentifikasi permasalahan terkait klasifikasi t-

ingkat kerusakan jalan berdasarkan informasi yang diperoleh mengenai kon-

25



AVTH VHENS NIN

P

%

‘nery eysng Nin Jelem Buek uebunuaday ueyiBniaw yepn uedinBuad 'q

‘NEN BYSNS NN Wiz edue) undede ymuaqg wejep i syny eAiey yninjas neje ueibeges syefueqiadwsaw uep uejwnwnBuaw Buele)q 'z
‘yejesew njens ueneluy neje yuuy vesnuad ‘uesode] ueunsnAuad ‘yeiw) efsey uesiinuad ‘ueyauad ‘ueyipipuad ueBunuaday ymun efuey vedynbusy e

)~

7

£
!

"

:18quINs ueyIngaAusiu uep ueywmuesuaw edue) jul sin) eAiey yrnunjas neje ueibegaes dynBuaw Buesejq 'L

Buepun-Buepun 1Bunpuijig e1did yey

disi infrastruktur di Indonesia, khususnya di kota Pekanbaru Provinsi Riau.
Informasi tersebut dihimpun dari berbagai sumber seperti Perwakilan Badan
Pemeriksa Keuangan (BPK) RI di Riau, Kementerian Pekerjaan Umum dan
Perumahan Rakyat (PUPR), serta media lokal yang menyoroti kerusakan
jalan dan dampaknya terhadap aktivitas masyarakat. Untuk memperkuat
proses identifikasi permasalahan, peneliti juga melakukan wawancara de-
ngan pihak terkait guna memperoleh gambaran kondisi lapangan serta k-
endala dalam evaluasi kerusakan jalan. Pedoman pertanyaan dan ringkasan
hasil wawancara disajikan pada Lampiran B. Selain itu, peneliti melam-
pirkan dokumentasi kegiatan pendukung berupa dokumentasi wawancara,
komunikasi dengan pihak terkait, serta dokumentasi visual kondisi jalan
yang disajikan pada Lampiran C.

Studi Literatur.

Studi literatur merupakan langkah awal yang dilakukan sebelum memu-

0

nNely exsng NN YM!jlw ejdio yeq @

lai suatu penelitian, yaitu dengan menyusun perencanaan. Tahapan ini di-
lakukan dengan menelaah berbagai sumber bacaan, baik dari jurnal nasion-
al maupun internasional, yang relevan dengan topik penelitian. Tujuannya
adalah untuk memperoleh informasi sebagai dasar dalam membangun k-

erangka berpikir penelitian.

3.2 Data Collection

Penelitian ini menggunakan dataset publik sebagai sumber data utama, da-
lam proses pelatihan, validasi, dan pengujian model. Dataset yang digunakan di-
peroleh dari platform Kaggle dengan nama Road Damage Classification and As-
sc"né'ssment. Dataset ini dipilih karena menyediakan citra kondisi jalan yang telah
teranotasi dengan baik dan umum digunakan dalam penelitian klasifikasi kerusakan
jaan berbasis citra. Dataset ini terdiri dari sekitar 2.078 gambar dan terbagi ke
dalam empat kelas kondisi jalan, yaitu good berjumlah 845 data, satisfactory se-
bgt_lyak 515 data, poor sebanyak 396, dan very poor sebanyak 318. Keempat ke-
laf?nya merepresentasikan variasi tingkat kerusakan permukaan jalan yang berbeda,
sehingga sesuai untuk kebutuhan klasifikasi multikelas.

LS

; Citra pada dataset ini memiliki variasi sudut pandang, jarak pengambilan
g:ﬁa-;nbar, serta kondisi pencahayaan, sehingga mencerminkan kondisi permukaan
jaﬁan yang beragam di lapangan. Variasi ini mencerminkan kondisi permukaan jalan
ygng berbeda-beda dan memberikan tantangan yang realistis bagi model dalam

peoses pembelajaran. Dengan karakteristik tersebut, dataset ini dinilai cukup repre-

E
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sentatif untuk digunakan sebagai dasar pengembangan dan evaluasi model Convo-
lfitional Neural Network (CNN).

;I, Seluruh citra pada dataset selanjutnya diproses melalui tahap preprocessing,
kﬁususnya penyesuaian ukuran citra (resize) menjadi 224 x 224 piksel, agar sesuai
dengan kebutuhan input arsitektur CNN yang digunakan. Penyeragaman ukuran
cﬁa ini bertujuan untuk memastikan konsistensi dimensi input serta mendukung

pg)ses pelatihan model yang lebih stabil dan optimal.

33 Split Data (80:20)

= Pada tahap berikutnya, dataset dibagi menjadi tiga bagian yaitu data train-
ing, data validation, dan data festing. Sebelum model dijalankan, langkah ini sangat
p:?::nting dalam proses persiapan data. Dalam penelitian ini, metode Hold-Out digu-
ngﬂ(an dengan perbandingan rasio 80:10:10. Selanjutnya, data yang telah dibagi
dffjempatkan dalam direktori yang berbeda untuk memudahkan administrasi sela-
r;;\ proses pelatihan dan evaluasi. Untuk memastikan bahwa model yang dikem-
bangkan dapat diuji secara objektif dan memiliki kemampuan generalisasi yang
baik terhadap data yang belum pernah dilihat sebelumnya, serta untuk menghindari

overfitting.

3.4 Preprocessing Data

Preprocessing data dilakukan untuk meningkatkan kualitas gambar dan
mengurangi gangguan (noise) yang menghambat performa model. Dalam peneli-
tian ini, tahapan preprocessing mencakup penyesuaian ukuran gambar, normalisasi

nijai piksel, dan augmentasi data.

e}

Resize Image

Penyesuaian ukuran gambar dilakukan untuk menyeragamkan dimensi selu-
ruh citra dalam dataset. Semua gambar jalan diubah ukurannya menjadi 224
x 224 piksel. Ukuran ini dipilih karena sesuai dengan format input standar
dari beberapa arsitektur Convolutional Neural Network (CNN), seperti In-
ceptionV3, DenseNet201, VGG16, EfficientNetB0, ResNet5S0V?2.

Normalization

o

AJISI3ATU[] DTWE[S] 3

-

Normalisasi digunakan untuk mengonversi nilai piksel dari setiap gambar
ke skala antara O dan 1. Proses ini dilakukan dengan cara membagi setiap
nilai piksel dengan angka 255, yang merupakan nilai tertinggi dalam for-
mat warna RGB. Teknik ini membantu model dalam mempercepat proses

pelatihan dan menjaga kestabilan pembelajaran.

nery wisey] jireAg uejing jo
(O8]

Augmentation

27



AVTH VHENS NIN

P

%

‘nery eysng Nin Jelem Buek uebunuaday ueyiBniaw yepn uedinBuad 'q

‘NEN BYSNS NN Wiz edue) undede ymuaqg wejep i syny eAiey yninjas neje ueibeges syefueqiadwsaw uep uejwnwnBuaw Buele)q 'z
‘yejesew njens ueneluy neje yuuy vesnuad ‘uesode] ueunsnAuad ‘yeiw) efsey uesiinuad ‘ueyauad ‘ueyipipuad ueBunuaday ymun efuey vedynbusy e

)~

7

£
!

"

:18quINs ueyIngaAusiu uep ueywmuesuaw edue) jul sin) eAiey yrnunjas neje ueibegaes dynBuaw Buesejq 'L

Buepun-Buepun 1Bunpuijig e1did yey

Augmentasi data dilakukan untuk meningkatkan variasi dan jumlah citra
pelatihan guna mengurangi risiko overfitting serta memperkaya representasi
visual dari setiap kelas. Teknik ini menciptakan versi modifikasi dari gam-
bar asli melalui penerapan rotasi hingga 30 derajat, pembalikan horizon-
tal, perbesaran (zoom) maksimal 15%, pergeseran posisi horizontal, vertical
flip dinonaktifkan karena tidak sesuai karakteristik data jalan, serta shear
(kemiringan) sebesar 15%. Area kosong akibat transformasi diisi meng-
gunakan metode nearest agar struktur citra tetap terjaga. Selain itu, pre-
processing input dapat digunakan melalui parameter preprocessing_function
untuk mengubah nilai dan format gambar sesuai dengan arsitektur CNN
yang digunakan. Proses preprocessing dan augmentasi ini dilakukan meng-
gunakan modul ImageDataGenerator pada TensorFlow. Ini meningkatkan

kemampuan model untuk diterapkan pada data baru.

Beiy eYsns NN Alw eldio jeH ©

CNN Architecture Model

Pada tahap ini dilakukan pengujian model dengan menerapkan beberapa ar-
sitektur CNN untuk klasifikasi tingkat kerusakan jalan berbasis citra digital. Ar-
sitektur yang digunakan meliputi InceptionV3, DenseNet201, VGG16, Efficient-
NetB0, ResNet50V2. Untuk mengoptimalkan proses ekstraksi fitur dan mencegah
overfitting, setiap arsitektur disesuaikan dengan menambahkan lapisan tambahan
seperti fungsi aktivasi ReLU, Global Average Pooling, Dense layer, Batch Nor-
malization, dan Dropout. Seluruh model dilengkapi dengan lapisan output yang
memiliki empat neuron, menggunakan fungsi aktivasi softmax karena penelitian ini
béftujuan mengklasifikasikan gambar ke dalam empat kategori kondisi jalan. Pa-
dE' tahap pemrosesan input, digunakan dua pendekatan, yaitu tanpa preprocessing
i@ut dan dengan preprocessing input bawaan dari masing-masing arsitektur CN-
@m Tujuan penggunaan pemrosesan preprocessing input adalah untuk mencocokkan
distribusi nilai piksel citra dengan karakteristik model yang telah ditentukan se-
bgl_umnya pada dataset ImageNet, sehingga transfer learning dapat berjalan lebih
OEtimal.

s Seluruh model dikompilasi dengan menggunakan fungsi loss sparse cat-
egorical crossentropy, dengan learning rate 0,0001, serta metrik evaluasi berupa
ai;lrasi. Pelatihan dilakukan selama 50 epoch dengan batch size 32, dan menggu-
n?ﬁ(an beberapa callback untuk meningkatkan efisiensi serta stabilitas model, seperti
l%rlyStopping, ReduceLROnPlateau, ModelCheckpoint, TensorBoard, serta Train-

iwfugﬁmeCallback yang digunakan untuk mengawasi durasi pelatihan. Pendekatan

E
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ini diharapkan dapat menghasilkan performa model yang bagus pada data validasi

séfta memberikan hasil klasifikasi yang tepat pada gambar kondisi jalan.
T

3.6 Optimizer
L Optimizer digunakan untuk mengurangi nilai /loss function serta
rgeningkatkan akurasi model selama proses pelatihan. Dalam penelitian ini,
digunakan tiga jenis optimizer, yaitu Adaptive Moment Estimation (Adam), Root
Mean Square Propagation (RMSProp) dan Stochastic Gradient Descent (SGD)
y%g masing-masing memiliki keunggulan dalam mengatur pembaruan bobot
secara adaptif. Pemilihan dan pengaturan optimizer sangat penting untuk desain
damn implementasi model deep learning karena dapat meningkatkan performa
r;m:i)del dengan mempercepat proses pelatihan dan meningkatkan akurasi prediksi.
T'E:;juan dari penelitian ini adalah untuk menghasilkan model klasifikasi gambar
yﬁlg akurat dan efektif dengan menggabungkan keunggulan dari Adam, RMSProp,
dan SGD.

Selama proses pelatihan, digunakan teknik early stopping dan model check-
point untuk menyimpan model terbaik berdasarkan hasil validasi. Pelatihan di-
lakukan selama 50 epoch hingga model menunjukkan konvergensi atau terjadi pen-
ingkatan error pada data validasi.

3.7 Evaluasi Model

Setelah berbagai percobaan, fase evaluasi model menjadi komponen penting
dari penelitian klasifikasi gambar. Tujuan dari evaluasi ini adalah untuk mengetahui
seperapa baik model mampu mengklasifikasikan gambar baru dengan benar. Confu-
ston matrix adalah alat penting yang digunakan karena memberikan gambaran rin-
ciﬂitentang performa model. Ini memungkinkan analisis kesalahan dilakukan lebih
la%jut untuk menemukan pola kesalahan tertentu, dan berguna untuk menilai dan
H:E'?mperbaiki arsitektur model, pengaturan hyperparameter, dan strategi augmen-
tasi data. Hasil dari confusion matrix menampilkan Accuracy, Precision, Recall
d%n score F1 yang ditampilkan pada classification report serta ROC.
3?33} Tahap Deployment
L; Tahap deployment merupakan proses implementasi model Convolutional
N_e)ural Network (CNN) dengan performa terbaik ke dalam sistem klasifikasi tingkat
kgrusakan jalan berbasis web menggunakan framework Flask. Sistem ini meneri-
na input berupa citra kondisi jalan, kemudian melakukan tahap preprocessing s-
estiai dengan proses pelatihan model. Selanjutnya, citra tersebut diklasifikasikan ke
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dalam empat kelas tingkat kerusakan jalan, yaitu good, satisfactory, poor, dan very
pBbr. Hasil prediksi ditampilkan sebagai keluaran sistem untuk membantu proses

iq-lg'::ntiﬁkasi dan evaluasi kondisi jalan secara otomatis menggunakan gambar digital.
.o

3.9 Tahap Dokumentasi dan Laporan Akhir

E Tahap dokumentasi dan penulisan laporan akhir dilakukan agar seluruh
proses dan hasil penelitian dapat disampaikan secara terstruktur. Dokumentasi di-
gumakan untuk mencatat setiap langkah dalam penelitian, mulai dari pengumpulan
dga, proses pembelajaran dan pengujian model CNN, hingga penerapan sistem k-
lasifikasi berbasis Flask. Laporan akhir ini merangkum tujuan penelitian, metode
yang digunakan, hasil pengujian, serta analisis kemampuan model yang diperoleh.
Sglain itu, laporan ini diharapkan bisa menjadi referensi bagi penelitian berikutnya
dgn dasar pengembangan lebih lanjut.

nery
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BAB 5
@)
= PENUTUP
b
51 Kesimpulan
° Penelitian ini dilaksanakan untuk menerapkan dan membandingkan perfor-

nia beberapa arsitektur Convolutional Neural Network (CNN) dalam mengklasi-
fikasikan tingkat kondisi jalan berbasis citra digital. Seluruh tahapan penelitian,
rri_bilai dari pengumpulan data, preprocessing, pelatihan model, evaluasi performa,
hiagga tahap deployment sistem, telah dilakukan secara sistematis sesuai dengan
nfetodologi yang ditetapkan. Berdasarkan hasil penelitian dan analisis sebelumnya,

w
maka dapat ditarik beberapa kesimpulan sebagai berikut:

S

= 1. Penelitian ini berhasil menerapkan dan membandingkan lima arsitektur
Convolutional Neural Network (CNN), yaitu InceptionV3, DenseNet201,
VGG16, EfficientNetBO, dan ResNet50V2, dengan tiga optimizer yang
berbeda, yaitu Adam, SGD, dan RMSprop, dalam mengklasifikasikan t-
ingkat kondisi jalan berbasis citra digital ke dalam empat kelas, yaitu good,

nely e

satisfactory, poor, dan very poor.

2. Berdasarkan hasil evaluasi menggunakan confusion matrix, diperoleh kom-
binasi arsitektur dan optimizer terbaik, yaitu DenseNet201 dengan optimiz-
er RMSprop, yang menghasilkan performa klasifikasi paling optimal dalam
penelitian ini.

3. Hasil penelitian ini memberikan gambaran awal mengenai penerapan k-

lasifikasi citra berbasis CNN sebagai pendekatan digital dalam mendukung

W
E proses identifikasi kondisi jalan. Pendekatan ini berpotensi membantu in-
= stansi terkait, seperti Dinas PUPR Kota Pekanbaru, sebagai bahan pertim-
w
& bangan dalam pengambilan keputusan pemeliharaan jalan.

Sg Saran
ET_ Berdasarkan hasil penelitian yang telah dilakukan, beberapa saran dapat di-

aﬁlkan untuk penelitian di masa depan. Dari aspek data, penelitian di masa depan
d@;arankan untuk memanfaatkan jumlah data yang lebih besar dan lebih beragam,
Bgik dari segi lokasi pengambilan citra, kondisi pencahayaan, maupun karakteristik
p&mukaan jalan, sehingga model yang dikembangkan memiliki kemampuan gener-
a_ﬁ__sasi yang lebih baik terhadap berbagai kondisi nyata di lapangan. Dalam konteks
préngembangan model, penelitian selanjutnya dapat mengeksplorasi dengan men-
egﬁpkan teknik seperti penyesuaian hyperparameter, metode ensamble, atau pen-

e
d"_Eﬁkatan berbasis segmentasi dan deteksi, seperti YOLO atau semantic segmenta-
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tion, untuk meningkatkan kemampuan mengidentifikasi kondisi kerusakan jalan.
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