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Abstract 

 

Thyroid disease is a common endocrine disorder that can cause serious 

metabolic and cardiovascular complications, so accurate early detection is 

clinically essential. This study proposes a Support Vector Machine (SVM) 

classifier enhanced with Recursive Feature Elimination (RFE) to select the most 

informative attributes and Adaptive Synthetic Sampling (ADASYN) to handle 

class imbalance in a Kaggle thyroid dataset of 3,771 clinical records. The data 

contain 25 diagnostic attributes with a strongly skewed distribution between 

healthy and thyroid cases. The model’s robustness was examined using three 

train–test split ratios. The best configuration, SVM with a Linear kernel and 20 

RFE-selected features under an 80:20 split, achieved 98.39% accuracy, with 

precision, recall, and F1-score all reaching 0.98, indicating consistently strong 

performance across classes. RFE contributes by removing redundant or weakly 

relevant variables, helping the classifier construct a more stable and 

interpretable decision boundary. ADASYN further improves the representation 

of the minority class, yielding higher recall and F1-score for thyroid cases and 

reducing the risk of missed diagnoses. Overall, the combined use of feature 

selection and adaptive oversampling produces a balanced and computationally 

efficient model for thyroid disease classification. These findings suggest that the 

proposed approach can support clinical decision-making, reduce diagnostic 

errors in imbalanced data settings, and strengthen early detection efforts in 

endocrine health assessment. By offering high sensitivity for thyroid cases while 

maintaining robust specificity for healthy patients, the model is well suited for 

integration into clinical decision-support and routine screening workflows. 

 

I. INTRODUCTION 

Thyroid disease is one of the most common hormonal disorders worldwide, affecting millions of people across 

all age groups and genders. Globally, approximately 5% of the population suffers from thyroid disorders, and in 

women, this figure can reach up to 10% due to hormonal fluctuations that influence thyroid function [1]. In clinical 

practice, this substantial and frequently underdiagnosed burden highlights the need for diagnostic approaches that 

can support earlier and more consistent detection of thyroid dysfunction, particularly in primary care and routine 

screening settings. In Indonesia, thyroid nodules are quite prevalent, and their detection has increased in recent 

years due to better public awareness and improved diagnostic imaging technologies. Recent hospital-based 

observations also suggest a steady rise in documented thyroid cases over time, especially in urban populations, 

indicating an increasing endocrine disease burden at the national level. Studies indicate that individuals aged 40–

49 years are the most frequently affected group, representing roughly 32% of total cases, suggesting that middle-

aged adults are particularly vulnerable to thyroid dysfunction [2]. Thyroid disorders not only impact hormone 

production but also have systemic effects on the body. These systemic disturbances can lead to functional 

impairment and reduced quality of life, further reinforcing the clinical importance of timely diagnosis and risk 

stratification. These conditions can increase the risk of serious cardiovascular complications such as coronary 
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heart disease, heart failure, and stroke, emphasizing the importance of early diagnosis and proper management 

[3]. The thyroid gland produces several essential hormones, namely Thyroxine (T4), Triiodothyronine (T3), and 

Thyroid Stimulating Hormone (TSH), which collectively regulate metabolism, energy production, and overall 

physiological functions. Imbalances in these hormones are key indicators of thyroid disorders and are critical for 

accurate diagnosis [4]. To date, no treatment exists that can completely cure thyroid diseases. Current therapies 

primarily aim to manage symptoms and stabilize hormone levels. For example, hypothyroidism is often treated 

with levothyroxine, while hyperthyroidism may be managed with antithyroid drugs, radioiodine therapy, or 

thyroidectomy,Although these treatments help regulate hormone levels, they do not repair or restore damaged 

thyroid tissue [5].The complexity of thyroid disorders arises from multiple causative factors, including 

autoimmune reactions, genetic predisposition, and iodine deficiency, alongside limited availability of long-term 

follow-up data, which complicates the determination of optimal individualized treatment strategies [6]. Recently, 

machine learning technologies have been increasingly applied in healthcare, particularly for early detection and 

classification of thyroid disorders. Machine learning algorithms can analyze complex patterns in clinical and 

laboratory data more efficiently and accurately than traditional diagnostic methods [7]. Within this context, the 

present study explores a classification framework based on Support Vector Machine (SVM) combined with 

Recursive Feature Elimination (RFE) and Adaptive Synthetic Sampling (ADASYN), with the explicit aim of 

developing a data-driven diagnostic tool that can be aligned with clinical workflows for thyroid disease screening 

and decision support. 

Robust scaler is a data preprocessing technique used to normalize features in a way that is more resistant to 

outlier values [8]. Unlike scaling techniques such as standard scaler or min-max scaler, which use mean, standard 

deviation, minimum, or maximum values that are easily affected by outliers. Instead, robust scaler works by 

reducing data values to the median and dividing them by the interquartile range (IQR). By using Q1, Q2 (median), 

and Q3, this technique prevents data from changing drastically due to deviating values. Because it only utilizes 

the middle part of the data, robust scaler is the right choice for datasets with many outliers, so that the scaling 

results remain stable and are not easily disturbed. In the context of thyroid disease data, where laboratory 

indicators such as TSH, TT4, or FTI can exhibit extreme values, robust scaling helps stabilize the feature space 

so that the subsequent SVM classifier can construct a more reliable decision boundary. 

Adaptive Synthetic Sampling (ADASYN) is an oversampling method developed to address class imbalance 

by adaptively generating synthetic samples in the most difficult-to-learn minority class areas. Unlike conventional 

oversampling methods, ADASYN places greater emphasis on minority samples with high classification error 

rates, enabling the model to learn minority patterns more effectively. Research shows that the application of 

ADASYN in stroke disease classification successfully improves recall and F1-score values because the class 

distribution becomes more balanced [9]. By focusing on hard-to-classify minority instances, ADASYN is 

particularly relevant for thyroid datasets where confirmed disease cases are much fewer than healthy cases, as it 

can enhance sensitivity to thyroid disorders and reduce the likelihood of missed diagnoses in imbalanced clinical 

settings. 

Among these algorithms, Support Vector Machine (SVM) has gained prominence as a supervised learning 

technique capable of both classification and regression tasks. SVM aims to identify the optimal hyperplane that 

separates data from different classes with the maximum margin, making it highly effective for high-dimensional 

datasets [10]. SVM can handle both linear and non-linear data through the use of kernel functions, which map 

input features into higher-dimensional spaces to enhance separability [11]. However, SVM performance strongly 

depends on the quality and relevance of input data. Datasets that are unbalanced or contain irrelevant features may 

reduce the model’s accuracy and stability, necessitating the use of supporting techniques to improve classification 

results [12]. Therefore, supporting methods are needed to improve SVM performance and classification results. 

Two commonly employed techniques to enhance SVM performance are Recursive Feature Elimination (RFE) 

and Adaptive Synthetic Sampling (ADASYN). RFE is a feature selection method that iteratively removes less 

important features based on their contribution to the model, retaining only the most relevant subset. This reduces 

model complexity while maintaining or improving predictive accuracy [13]. ADASYN addresses the challenge 

of imbalanced datasets by adaptively generating synthetic samples for minority classes, enabling the model to 

better learn rare patterns and improve classification performance in difficult to classify cases [14]. The 

combination of SVM with RFE and ADASYN has demonstrated improved stability, robustness, and accuracy in 

various medical classification tasks, including stroke prediction, cancer detection, and thyroid disease 

classification [15]. By selecting the most informative features and balancing class distributions, the model can 

achieve higher precision, recall, and F1-score, which are critical for evaluating the effectiveness of diagnostic 

tools. 

Based on this background, this study aims to investigate the application of an integrated approach combining 

SVM, RFE, and ADASYN for thyroid disease classification. Specifically, it seeks to address the identified 

research gap by providing a systematic evaluation of SVM configurations with and without RFE and ADASYN 

on an imbalanced thyroid dataset. The research focuses on evaluating how RFE can enhance SVM effectiveness 

through optimal feature selection and how ADASYN can mitigate data imbalance issues. In particular, the study 
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quantifies the impact of each technique individually and in combination on key performance indicators such as 

accuracy, precision, recall, and F1-score, with special attention to improvements in minority-class detection. By 

leveraging these methods, the study seeks to improve model performance in terms of accuracy, precision, recall, 

and F1-score. From a practical standpoint, the proposed framework is intended not only as a technical contribution 

but also as a candidate decision-support component that can be integrated into clinical information systems to flag 

patients at higher risk of thyroid dysfunction. This approach is expected to provide a more reliable and 

interpretable classification model that can assist healthcare professionals in early detection, improve treatment 

planning, and ultimately reduce the risk of severe complications associated with thyroid disorders. 

II. RELATED WORKS/LITERATURE  REVIEW 

Support Vector Machine (SVM) is a supervised machine learning algorithm used for classification and 

regression. This algorithm works by finding the best separating boundary so that data from each class can be 

clearly distinguished [10]. Research by [16] Performing a comparison of methods for predicting thyroid disease 

with a dataset of 3,772 cases and 22 variables. Several classification methods were compared, including Support 

Vector Machine (SVM), Random Forest, Decision Tree, Logistic Regression (LR), and K-Nearest Neighbors 

(KNN). The SVM method had the highest accuracy of 98.6%, with a precision of 98.4%, recall of 98.7%, and an 

F1-score of 98.5%.  

Similar research conducted by [17] which compares several methods for predicting thyroid disease with 422 

data points and 26 variables. The research dataset is unbalanced, with 125 cases of thyroid disease and 297 cases 

of no thyroid disease. This study compares methods such as Random Forest, Decision Tree, and Support Vector 

Machine. The SVM method has the highest accuracy of 90%. These findings confirm that SVM is a strong 

baseline for thyroid disease classification, but they also show that performance can be affected by dataset 

characteristics such as imbalance and noise. Previous studies have shown that the SVM method can deliver fairly 

good results, but the outcomes may vary depending on the characteristics of the dataset and the testing method 

used. Some studies also achieved less-than-optimal accuracy due to the imbalance in the number of data points 

between classes. Therefore, this study will incorporate additional methods to address this issue, aiming to make 

thyroid disease predictions more accurate and consistent. 

Robust Scaler is one of the important preprocessing techniques for addressing scale differences and sensitivity 

to outliers. Research by [18]. The choice of scaling technique greatly affects the performance of classification 

models, especially in algorithms and datasets with varying levels of imbalance. Of the five scaling techniques 

tested, the robust scaler showed superiority because it is resistant to outliers and effective for data with uneven 

distribution. The study also emphasized that each algorithm has a different level of sensitivity to changes in data 

scale, so choosing a scaling technique such as the robust scaler is the right step in the machine learning process. 

In thyroid disease datasets, which often contain extreme laboratory values, robust scaling helps stabilize feature 

ranges so that downstream models such as SVM can build more reliable separating hyperplanes. 

Feature selection (RFE) is a method that works gradually by discarding features with small contributions until 

only the most important features remain. This method has been proven to make models more efficient without 

reducing prediction accuracy [19]. Research conducted by [13] Using a dataset consisting of 569 samples and 30 

variables, the results of the study show the use of the RFE method in SVM for breast cancer classification. After 

feature selection using RFE, the number of features was successfully reduced to the 15 most important features 

without reducing the model's performance. From the test results, the best model with a 90:10 data split produced 

an accuracy value of 98%, precision of 100%, recall of 94%, and an F1-score of 97% [13]. Therefore, RFE is an 

important component in improving the efficiency and stability of medical classification models. These RFE-based 

studies illustrate the strand of literature that focuses on feature selection as a way to reduce dimensionality, remove 

noisy attributes, and preserve or even enhance diagnostic performance in clinical prediction tasks. In addition to 

feature selection, data balancing is also very important for improving SVM performance. ADASYN is an 

adaptation of the SMOTE method that works in a more adaptive way. This technique creates new synthetic data 

around the most difficult-to-predict minority samples, allowing the model to learn better and be balanced across 

all classes [14]. This method can improve data distribution and increase the sensitivity of the model to minority 

classes without causing excessive overfitting [20] [21]. A similar study conducted by [15] Applying SMOTE to 

stroke disease classification using SVM with RBF kernel. This combination improves accuracy to 90.51% and 

significantly increases precision and recall values. Because ADASYN works more adaptively than SMOTE, this 

approach is considered more effective for medical datasets with unbalanced distributions, such as thyroid disease 

cases. Taken together, these works represent the resampling and data-balancing line of research, showing that 

oversampling techniques can substantially improve minority-class detection when used alongside SVM in medical 

settings. 

Several previous studies have also compared SVM with other algorithms in the context of medical 

classification. Research by [12] shows that SVM with RBF kernel provides better results than logistic regression 

in predicting stroke, with an accuracy of 84%. Research by [22] Using SVM to diagnose chronic kidney disease 

and achieving an accuracy of 96.42%. However, the two previous studies did not use resampling and feature 
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selection techniques. The latest study shows that combining RFE and ADASYN can make the model stronger and 

improve predictive capabilities in complex medical data [23]. These findings indicate that SVM-based models, 

feature selection techniques such as RFE, and resampling methods such as ADASYN or SMOTE have each been 

studied, but most existing work treats them in isolation or in partial combinations rather than as a fully integrated 

framework evaluated on thyroid disease data. 

Based on the discussion, it is known that SVM performance is greatly influenced by feature relevance and data 

balance. RFE and ADASYN provide complementary benefits, as RFE filters out features that are truly needed, 

while ADASYN helps to even out the distribution of data for each class. However, the simultaneous and 

systematic use of these two methods in a single SVM-based framework for thyroid disease classification especially 

on large, highly imbalanced clinical datasets has been rarely explored in previous studies. Therefore, this study 

aims to build an SVM model using RFE and ADASYN. The novelty of this research lies in explicitly evaluating 

the individual and combined effects of RFE and ADASYN on SVM performance for thyroid disease, with a focus 

on key indicators such as precision, recall, and F1-score for the minority (diseased) class. This study produces a 

more accurate and consistent disease classification system that is capable of handling unbalanced data. In addition, 

this study is expected to contribute to the development of machine learning-based medical diagnosis technology 

in Indonesia. 

III. METHODS 

 This quantitative study evaluates the impact of feature selection and data balancing on the performance of 

SVM in classifying thyroid disease. The workflow includes data collection, preprocessing, transformation, 

imbalanced data handling, RFE application, data splitting, and SVM training and testing. These steps were 

conducted to obtain an optimal classification model for medical data, as illustrated in Figure 1. 

 

 
Fig. 1 Research Methodology 

Figure 1 presents the research flow consisting of data selection, preprocessing, transformation, class balancing 

with ADASYN, feature selection using RFE, and SVM modeling. The final stage evaluates model performance 

using accuracy, precision, recall, and F1-score. 

A. Data Collection 

 The data used in this study is secondary data in the form of a collection of datasets obtained from the Kaggle 

platform. The data can be accessed via https://www.kaggle.com/datasets/yasserhessein/thyroid-disease-data-set.  
The Thyroid Disease Data Set consists of 3,771 data points with 25 attributes. 

TABLE 1 

ORIGINAL DATASET 

No Age Sex ... TSH  TT4 T4U FTI BINARY 

CLASS 

1 41 0 ... 1.3  125 1.14 109 0 

2 23 0 ... 4.1  102 0.995 110.4696 0 

3 46 1 ... 0.98  109 0.91 120 0 

4 70 0 ... 0.16  175 0.995 110.4696 0 

5 70 0 ... 0.72  61 0.87 70 0 

... ... ... ... ...  ... ... ... ... 

3768 68 0 ... 1  124 1.08 114 0 

3769 74 0 ... 5.1  112 1.07 105 0 

3770 72 1 ... 0.7  82 0.94 87 0 

3771 64 0 ... 1  99 1.07 92 0 

Table 1 shows the original data values containing patient information, such as age, sex, and thyroid hormone 

test values. The binary class column is used as a label to distinguish between patients who are indicated to have 

thyroid disease and those who are not. This data forms the basis for further analysis and modeling. 

 

 



Citra Wulandari, Iis Afrianty, Elvia Budianita, & Siska Kurnia Gusti 

 bit-Tech, 2025, 8 (2), 2952 

TABLE 2 

DATASET ATTRIBUTES  

No Attribute Description 

1 Age Patient’s Age 

2 Sex Patient’s Gender 

3 On thyroxine  Currently Taking Thyroxine Medication 

4 Query on thyroxine History of Thyroxine Usage 

5 On_antithyroid medication Currently Taking Anti-Thyroid Medication 

6 Sick Presence of Illness 

7 Pregnant Pregnancy Status 

8 Thyroid surgery History of Thyroid Surgery 

9 1131 treatment History of Radioactive Iodine (I-131) Treatment 

10 Query hypothyroid Suspected Hypothyroidism 

11 Query hyperthyroid Suspected Hyperthyroidism 

12 Lithium Lithium Consumption 

13 Goiter Presence of Goiter or Thyroid Enlargement 

14 Tumor Presence of Tumor 

15 Hypopituitary Pituitary Gland Disorder 

16 Psych Psychological Disorder 

17 TSH measured TSH Measurement Status 

18 TSH Thyroid-Stimulating Hormone Level 

19 T3 measured T3 Measurement Status 

20 T3 Triiodothyronine Level 

21 TT4 measured Total Thyroxine (TT4) Measurement Status 

22 TT4 Total Thyroxine Level 

23 T4U measured T4 Uptake Measurement Status 

24 T4U T4 Uptake Value 

25 FTI Free Thyroxine Index Value 

 

Table 2 shows all attributes used in the thyroid disease dataset along with their descriptions. These attributes 

form the basis for the preprocessing, feature selection, and classification model development processes in this 

study. 

B. Data Selection 

  In the data selection stage, the research begins by identifying and retaining only the most relevant attributes 

and samples to ensure the integrity and representativeness of the dataset used for classification. This step is 

essential for minimizing noise and reducing unnecessary model complexity, particularly in medical datasets where 

not all variables contribute equally to diagnostic decision-making. The dataset employed in this study consists of 

3,771 samples and 25 clinical and laboratory attributes related to thyroid function. Each attribute is examined for 

its clinical relevance and suitability for inclusion in the modeling workflow to avoid incorporating irrelevant or 

misleading information. 

Furthermore, data selection ensures that the final dataset accurately reflects the underlying population 

characteristics, enabling the classification model to generalize effectively. By validating the completeness of 

attributes and the consistency of samples across all entries, the process reduces the risk of bias arising from non-

representative variables or inconsistent data patterns. This stage also prepares the dataset for subsequent pre-

processing and transformation steps, creating a structured and coherent foundation for building a reliable and 

accurate classification model. 

C. Data Pre-processing 

The pre-processing stage is carried out to ensure that the dataset is clean, coherent, and suitable for machine 

learning model development. One of the primary tasks in this stage involves handling missing values that, if 

ignored, may introduce significant bias or distort the model’s learning process. Depending on the extent and 

pattern of missingness, appropriate strategies such as imputation or removal of problematic rows are applied. 

Additionally, outlier detection is conducted to identify extreme values that could disrupt distributional 

assumptions or disproportionately influence the classification boundary. 

Another crucial aspect of pre-processing is the removal of duplicated records and the reorganization of the 

dataset to ensure structural consistency. Duplicate entries can distort the model’s perception of class distributions, 

potentially leading to overfitting and reduced generalization ability. By ensuring that each record is unique and 

that the dataset maintains a coherent and logical structure, this stage enhances the reliability of the learning 

process. Ultimately, effective pre-processing improves data quality and provides a stable foundation for the 

subsequent modeling phases, contributing directly to better predictive performance.. 

D. Data Transformation 

Data transformation is conducted to standardize the scale of all variables so that the classification model, 

particularly SVM, can operate more effectively. In this study, the Robust Scaler method is employed due to its 

resilience against outliers, which are commonly present in clinical laboratory datasets. This technique normalizes 
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feature values by subtracting the median (Q2) and dividing by the interquartile range (Q3–Q1), as represented in 

Equation (1). Unlike standard normalization approaches that rely on the mean and standard deviation, Robust 

Scaler focuses on the central portion of the data, thereby preventing extreme values from disproportionately 

affecting the scaling process. 

𝑋′ =  
(𝑋−𝑀𝑒𝑑𝑖𝑎𝑛 (𝑋))

(𝑄3−𝑄1)
   (1) 

Where Q2 is the median, and Q1 and Q3 are the first and third quartiles, respectively. This method has been 

proven effective in maintaining data scale stability and improving classification model accuracy in datasets 

containing outliers [24]. 

E. Handling Imbalanced Data 

ADASYN is a technique used to add data to classes with small numbers so that the dataset becomes more 

balanced Unlike SMOTE, which adds data evenly, ADASYN creates new data mainly in minority classes that are 

difficult to learn. Figure 2 shows the data before ADASYN. There are a total of 3,417 data points in class 0 (no 

thyroid) and 291 data points in class 1 (thyroid) out of a total of 3,771 data points. 

 
Fig. 2 Data Before ADASYN 

Figure 3 shows the data after applying Adasyn. The data is balanced with a total of 6,817 samples, consisting 

of 3,417 for class 0 and 3,400 for class 1. With this balance, the model can detect patterns in both classes more 

effectively. 

 
Fig. 3 Data After Adasyn 

ADASYN works by adaptively adding synthetic data to minority classes, especially to the most difficult 

samples to learn. The difficulty level is calculated from the number of majority neighbors around the minority 

sample, then new data is created through interpolation with the nearest neighbors. This process helps balance the 

class distribution so that the model can better recognize minority patterns [25]. 

F. Selection Feature (RFE) 

Recursive Feature Elimination (RFE) is a wrapper-based feature selection method that works by repeatedly 

training the model, then gradually eliminating features with the lowest contribution until a subset of the most 

relevant features is obtained to improve prediction performance[19]. In this study, RFE was applied to minimize 

the number of irrelevant or redundant features, so that the Support Vector Machine (SVM) classification model 

could run more efficiently, faster, and achieve a better level of accuracy. The formula for determining the weights 

of these features is defined by [26]. 

 At this stage, the feature weights are computed using the separating hyperplane of the linear SVM. Each weight 

is derived from the contribution of individual training samples through the Lagrange multiplier (αᵢ), class label 

(yᵢ), and feature vector (xᵢ), as expressed in Equation (2): 

  𝑤 =  ∑ 𝛼𝑘𝑦𝑘𝑥𝑘
𝑛
𝑘=1      (2) 

Subsequently, the ranking criterion for each feature is computed by squaring the corresponding weight 

component. This criterion determines the order in which features are eliminated, with features having the smallest 

weight magnitude removed first. The ranking calculation is presented in Equation (3): 

  𝑐𝑘 =  (𝑤𝑘)2, 𝑘 =  1, 2, … , |𝑆|      (3) 

 In the third stage, features are sorted based on their weight, where features with the lowest weight are 

eliminated in each iteration. The Recursive Feature Elimination (RFE) process involves retraining the linear SVM 
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model in each iteration. Next, the SVM model is retrained using the remaining features, and this procedure is 

repeated until all features are eliminated. At the end of the process, the features are sorted based on the order of 

elimination, with the last eliminated feature considered to have the most significant influence [27]. 

Weight 𝑤 is the SVM separating vector the value 𝑎𝑖 is the Lagrange multiplier for the i-th data point. Wher 𝑦𝑖 

is the class label. The feature vector of the-ith data point is denoted as 𝑥𝑖. Feature index marked as 

k, and the total number of features in the dataset is denoted as |𝑆|. The value 𝑐𝑘 is the ranking criterion value for 

feature k, and (𝑤𝑘)2 is the weight contribution of that feature. 

G. Data Splitting 

The data splitting stage is a critical component of the machine learning workflow, as it separates the dataset 

into training and testing subsets to enable systematic model development and evaluation. The training set is used 

to fit the model and learn the decision boundaries, while the testing set serves as independent data to assess how 

well the model generalizes to previously unseen cases. This separation is essential for preventing information 

leakage, which can occur when the model inadvertently learns patterns from the test set, leading to inflated 

performance metrics. By ensuring that the model is evaluated solely on data it has not encountered during training, 

the data splitting process provides a more reliable estimate of the model’s real-world classification capability. 

In this study, the dataset is divided using common ratios such as 90:10, 80:20, and 70:30 to examine the effects 

of different training sizes on model stability and predictive performance. Larger training portions, such as the 

90:10 split, provide the model with more data to learn complex relationships, whereas splits like 70:30 offer a 

larger test set for more rigorous evaluation. Testing across multiple ratios allows for a comprehensive analysis of 

model behavior under varying conditions, helping determine the most optimal balance between training depth and 

generalization strength. This approach ensures a more robust evaluation framework and reduces the risk of 

overfitting, ultimately supporting the development of a classifier that performs consistently across diverse data 

distributions. 

H. SVM Classification Method 

At this stage, the SVM model is trained and tested using thyroid data that has been split into 90:10, 80:20, and 

70:30 ratios. Classification is performed with linear, polynomial, and RBF kernels, each tested with variations of 

the C parameter (1, 10, 100). The polynomial kernel uses degrees 1, 2, and 3, while the RBF kernel is evaluated 

with gamma settings (scale and gamma) and gamma values of 1, 2, and 3. The linear kernel is defined in Equation 

(4) as a simple dot product between feature vectors.:  

                 𝐾 (𝑥𝑖, 𝑥𝑗 ) = 𝑥𝑖. 𝑥𝑗     (4) 

 

The polynomial kernel used in this study follows the formulation presented in Equation (5), where the kernel 

function is expressed as: 

                         𝐾 (𝑥𝑖, 𝑥𝑗 ) = ( 𝑥𝑖. 𝑥𝑗 + 𝑐) ͩ   (5) 

In this equation, 𝑑represents the polynomial degree and 𝑐is a constant term controlling model flexibility. 

Meanwhile, the RBF kernel is computed according to Equation (6): 

      𝐾(𝑥𝑖, 𝑥𝑗) = exp( −𝛾 ||𝑥𝑖− 𝑥𝑗|| )²    (6) 

 In a polynomial kernel, the parameter 𝑑 is the degree of the polynomial and 𝑐  is the constant. The 
parameter 𝛾 used in the RBF kernel as a regulator of width of the gaussian function. 

 

I. Confusion Matrix Evaluation 

A confusion matrix is a useful tool for evaluating classification performance by comparing the model’s 

predictions with the actual data. It provides a clear overview of how accurately the model recognizes each class 

[28]. A confusion matrix is a concept in machine learning that studies existing data and groups it into new data 

by generating output in the form of categorical variables, both nominal and ordinal [29]. A confusion matrix 

consists of four key components: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 

(FN). Accuracy is a measure used to see how well a model can classify with correct results. Accuracy can be 

calculated using Equation (7). 

           Accuracy =  
(𝑇𝑃+𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 x 100%            (7) 

1) Precision is a measure that shows how accurate the model is in predicting positive data. Precision can be 

calculated using the equation (8). 

Precision = 
(𝑇𝑃+𝑇𝑁)

𝑇𝑃+𝐹𝑃
 x 100%                   (8) 

2) Recall is a measure that shows how well the model recognizes actual positive data. Recall can be 

calculated using Equation (9) 

   Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 x 100%                    (9) 
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3)  The F1 score is a measure used to assess the balance between precision and recall. The F1 score can be 

calculated using Equation (10). 

F1-Score = 
2 ( 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
        (10)  

IV. RESULTS 

This study used 3,771 cleaned thyroid records with 25 variables and was implemented in Python using Google 

Colab. RFE was applied for feature selection, while SVM with linear, RBF, and polynomial kernels served as the 

classification model. Performance was evaluated using the confusion matrix across three data split scenarios 

(70:30, 80:20, 90:10), with accuracy results presented in tabular form for comparison. 

A. Data Prepocessing 

In this study, the preprocessing stage was conducted through three primary steps: handling outlier values, 

managing missing values, and removing duplicate records. Prior to outlier correction, a descriptive statistical 

assessment was performed to understand the distribution of the main numerical attributes, namely Age, TSH, TT4, 

T4U, and FTI. The dataset consisted of 3,708 valid entries for each of these features. The Age variable exhibited 

a mean of 51.74 years with a standard deviation of 19.00, ranging from a minimum of 1 year to a maximum of 94 

years. Similarly, the TSH values showed a wide dispersion, with a mean of 5.08 and a standard deviation of 23.49, 

spanning from 0.005 at the minimum to an extreme maximum of 530. TT4 also displayed substantial variability, 

with values ranging from 2 to 430 and a mean of 108.32. For T4U, the values ranged from 0.25 to 2.32 with a 

relatively narrow mean of 0.99, while FTI varied between 2 and 395 with a mean of 110.48. 

 

The presence of large gaps between minimum and maximum values particularly in TT4, TSH, and FTI 

indicates clear outlier behavior that could distort model learning if left unaddressed. Quartile analysis further 

supports this observation, with the 25th, 50th, and 75th percentiles showing far more concentrated ranges 

compared to the extreme maximum values. For example, TT4 exhibited quartiles of 88.75, 105, and 123, while 

its maximum reached 430. Likewise, TSH had quartiles of 0.58, 1.55, and 3.50, yet an extreme maximum outlier 

of 530. These discrepancies highlight the need for thorough preprocessing to ensure data stability. Consequently, 

outlier handling procedures were implemented to reduce noise and improve the reliability of subsequent modeling. 

Cleaning these anomalies ensures that the classification model can learn more representative patterns from the 

thyroid dataset, ultimately supporting more accurate and robust prediction performance. 

 

1) Data Transformation 

In this step, Robust Scaler normalization is used. The normalized data can be seen in Table 3. The calculation 

process can be seen in Equation (1). 
TABEL 3 

DATA NORMALIZATION 

No Age Sex ... TSH  TT4 T4U FTI 

1 -0.419355 0 ... -0.085616  0.583942 0.833333 -0.035714 

2 -1 0 ... 0.873288  -0.087591 0.027776 0.016773 

3 -0.258065 1 ... -0.195205  0.116788 -0.444444 0.357143 

... ... ... ... ...  ... ... ... 

3769 0.645161 0 ... 1.215753  0.20438 0.444444 -0.178571 

3770 0.580645 1 ... -0.291096  -0.671533 -0.277778 -0.821429 

3771 0.322581 0 ... -0.188356  -0.175182 0.444444 -0.642857 

B. Recursive Feature Elimination (RFE) 

The result of the feature selection process using RFE is a ranking of all attributes from the most influential to 

the least influential. In addition, RFE also produces a list of selected attributes according to the specified number 

of features. Table 4 shows the calculation results and feature rankings based on the RFE method. The calculations 

for the RFE method can be seen in Equation (2) and Equation (3). 
TABLE 4 

RFE SELECTION FEATURE CALCULATION RESULTS 

No FEATURE NAME SELECTION STATUS WEIGHT VALUE 

1 On thyroxine Selected 7.6928 

2 Thyroid surgery Selected 5 

3 On antithyroid medication Selected 2 

4 l131 treatment Selected 1.3609 

5 TSH measured Selected 1.2718 
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6 Psych Selected 0.9401 

7 Query hyperthyroid Selected 0.8010 

8 Query on thyroxine Selected 0.7643 

9 FTI measured Selected 0.7533 

10 T4U measured Selected 0.7502 

11 Lithium Selected 0.7090 

12 Query Hypothyroid Selected 0.5892 

13 Tumor Selected 0.5603 

14 Sick Selected 0.5098 

15 TSH Selected 0.4706 

16 Goitre Selected 0.4276 

17 T3 measured Selected 0.1922 

18 Pregnant Selected 0.1501 

19 T4U Selected 0.0094 

20 Sex Selected 0.0038 

21 Age Eliminated 0 

22 Hypopituitary Eliminated 0 

23 TT4 measured Eliminated 0 

24 TT4 Eliminated 0 

25 FTI Eliminated 0 

The RFE results across all scenarios show that several features such as Pregnant, Age, Hypopituitary, TT4 

measured, TT4, and FTI were eliminated because they had low weights in the formation of the decision boundary 

line in SVM. This pattern is consistent with how RFE works, which repeatedly trains the model, assesses the 

weight of each feature, and then removes the features with the smallest contribution. As a result, only important 

features are retained, making the SVM model more efficient, more resistant to noise, and producing more stable 

accuracy across various data partitioning schemes. 

C. Modeling With SVM 

SVM was applied for classification across four scenarios to examine the effects of balancing and 

featureselection using linear, polynomial, and RBF kernels. The test scenarios are listed in Table 5. 
TABLE 5 

TEST SCENARIO 

Data Sharing  Method Features 

70:30, 80:20, 90:10 SVM 25 

70:30, 80:20, 90:10 SVM + ADASYN 25 

70:30, 80:20, 90:10 SVM + RFE 20, 15, and 10 

70:30, 80:20, 90:10 SVM + RFE + ADASYN 20, 15, and 10 

 

 
Fig. 4 Comparison Results for Each Kernel 

The Figure 4 compares the accuracy of three SVM kernels across multiple methods,  SVM, SVM with 

ADASYN, SVM with RFE, and their combination. Linear and RBF kernels outperform the Polynomial kernel. 

Performance may increase or decrease with ADASYN and RFE, but the best result is achieved by SVM + RFE + 

ADASYN using 20 features with the Linear kernel, reaching 98.19% accuracy.During the evaluation stage, model 

performance was compared based on four groups of methods, namely SVM, SVM + ADASYN, SVM + RFE, and 

SVM,RFE, and ADASYN. The best accuracy results for the SVM method without balancing and without feature 

selection were obtained in the 80:20 data split using a linear kernel, with an accuracy of 97.17%. The highest 

accuracy was achieved by the SVM and RFE method at an 80:20 ratio and also using a linear kernel, with an 

accuracy value of 98.39%.  

The confusion matrix results show that feature reduction through RFE can improve model stability and 

precision by significantly reducing the number of negative negatives. The last method, SVM, RFE, and ADASYN, 

achieved the highest accuracy at a 70:30 ratio and also used a linear kernel, with an accuracy value of 98.17%. 

This shows that the combination of data balancing and feature selection produces the most optimal performance 

improvement. Overall, the evaluation results show that the linear kernel consistently provides the best 

performance across all method groups, and the use of RFE and ADASYN makes the model more accurate and 

balanced, especially in terms of minority class recognition. 
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D. Evaluation 

After modeling, the SVM model was trained and tested using four scenarios evaluated through accuracy, 

precision, recall, and F1-score. These metrics, calculated using the confusion matrix, measure the model’s ability 

to distinguish thyroid from non-thyroid cases. The results for the 70:30, 80:20, and 90:10 data splits are presented 

in Table 6. 
TABLE 6 

PERFORMANCE COMPARISON AND SELECTION OF HIGHEST ACCURACY IN VARIOUS CONFIGURATIONS 

Method Feature Kernel Accuracy Precisiom Recall F1- Score 

SVM 25 Linear 97.17% 97% 97% 97% 

Polynomial 93.67% 93% 94% 92% 

RBF 94.47% 94% 94% 93% 

SVM + 

ADASYN 

25 Linear 96.77% 98% 97% 97% 

Polynomial 92.72% 96% 93% 94% 

RBF 94.07% 96% 94% 95% 

SVM + RFE 20 Linear 98.39% 98% 98% 98% 

Polynomial 62.62% 78% 63% 57% 

RBF 97.51% 98% 98% 98% 

SVM + RFE 15 Linear 96.68% 97% 97% 97% 

Polynomial 94.07% 94% 94% 93% 

RBF 97.21% 97% 97% 97% 

SVM + RFE 10 Linear 96.86% 97% 97% 97% 

Polynomial 93.89% 94% 94% 92% 

RBF 97.21% 97% 97% 97% 

SVM + RFE + 

ADASYN 

20 Linear 98.19% 98% 98% 98% 

Polynomial 70.04% 80% 70% 67% 

RBF 97.95% 98% 98% 98% 

SVM + RFE + 

ADASYN 

15 Linear 97.07% 97% 97% 97% 

Polynomial 71.41% 81% 71% 69% 

RBF 97.65% 98% 98% 98% 

SVM + RFE + 

ADASYN 

10 Linear 63.71% 73% 64% 60% 

Polynomial 63.71% 73% 64% 60% 

RBF 63.64% 73% 64% 60% 

 

SVM + RFE with 20 features produced the highest accuracy, namely 98.39% on the Linear kernel. RFE proved 

to be effective in selecting the most influential features so that the model was more efficient and accurate. SVM 

without RFE or with ADASYN remains good, but does not exceed SVM + RFE because it still uses all the initial 

features. ADASYN is used for evaluation on balanced data and the results confirm that optimal feature selection 

gives the best performance. A comparison of the accuracy of each kernel and its calculation is shown in Equations 

(4), (5), and (6). 

 

 

 

 

 

 

 

 

 

 

                                              (a)                                                              (b) 
Fig. 5 Comparison of confusion matrices with the highest accuracy in SVM testing 

(a) SVM without RFE or ADASYN, and (b) Combination Method (SVM + RFE + ADASYN) 

 

 

 

 

 

 

 

 

                             (c)                                                                                 (d) 

Fig. 6 Comparison of confusion matrix result with the highest accuracy in SVM testing 
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(c)SVM+ ADASYN, dan (d) SVM +RFE 

The comparison of confusion matrices presented in Figure 5 and Figure 6 provides a detailed visualization of 

how different SVM configurations perform under various preprocessing and feature selection strategies. Figure 

5(a) illustrates the confusion matrix of the baseline SVM model without RFE or ADASYN, showing that although 

overall accuracy is high, the model still misclassifies several minority-class samples due to the imbalance in the 

original dataset. In contrast, Figure 5(b), which corresponds to the combined SVM + RFE + ADASYN method, 

demonstrates a marked improvement in correctly identifying positive thyroid cases, indicating that integrating 

feature reduction and adaptive oversampling significantly enhances minority-class sensitivity. Meanwhile, Figure 

6(c) displays the results for SVM + ADASYN, showing improved recall but slightly reduced specificity due to 

the synthetic oversampling process, whereas Figure 6(d), representing SVM + RFE, highlights the stabilizing 

effect of feature elimination in reducing false negatives while maintaining high precision. Overall, the comparison 

across Figures 5 and 6 confirms that the best-performing configuration is the integration of RFE and ADASYN, 

as it produces a more balanced classification outcome and minimizes misclassification in both majority and 

minority classes. 

V. DISCUSSION 

The results indicate that the SVM + RFE configuration using a Linear kernel with an 80:20 data split achieved 

the highest accuracy of 98.39%. This outcome can be attributed to several interrelated technical factors involving 

the intrinsic characteristics of the selected features, the structural properties of the SVM algorithm, and the 

contribution of dimensionality reduction through RFE. Collectively, these elements interact to enhance the 

model’s ability to construct a more discriminative and stable decision boundary, leading to improved overall 

classification performance. At the same time, these results should be interpreted as one promising but not 

definitive configuration, since different data sources or clinical settings may require recalibration of the model 

and reassessment of its assumptions. 

 First, RFE successfully filtered out the most relevant features, particularly clinical features such as TSH, T3, 

TT4, T4U, FTI, Age, and Sex, which contributed significantly to the SVM decision-making process. By 

eliminating features with low weight, the model became simpler and free from noise. Previous research by [13] 

also shows that RFE improves the stability and accuracy of classification models, especially in medical problems 

that have many features but not all of them are informative. Therefore, the increase in accuracy in this scenario 

supports the theory that removing irrelevant features can widen the hyperplane margin in SVM, thereby improving 

model performance. However, the present study did not compare RFE with alternative feature-selection strategies 

such as LASSO, embedded methods based on tree ensembles (e.g., Random Forest feature importance), or mutual-

information-based filters, so it remains possible that other techniques could yield comparable or even superior 

feature subsets. Future work should therefore include a systematic comparison of multiple feature-selection 

approaches to determine whether the observed performance gains are specific to RFE or reflect a more general 

benefit of careful dimensionality reduction in thyroid disease classification. 

Second, the Linear kernel proved to be the most stable in producing high accuracy because the relationship 

pattern between features in the thyroid dataset became more linear after undergoing Robust Scaler normalization. 

This study is in line with research [12] which shows that the Linear kernel is effective for medical data whose 

variables are measured directly and do not contain many non-linear patterns. Because Linear SVM forms a 

hyperplane without feature space transformation, the model becomes more stable against data variation, especially 

with a fairly balanced data ratio such as 80:20. Nonetheless, the preference for a Linear kernel in this work should 

not be generalized uncritically to all medical datasets, since scenarios with more complex non-linear relationships 

or multimodal inputs may favor non-linear kernels or alternative models such as gradient-boosted trees and deep 

neural networks. 

Third, while ADASYN was applied, it did not provide notable gains, especially after RFE feature filtering. 

This is because the dataset’s minority class was already well represented after preprocessing, so RFE became the 

primary factor driving accuracy improvements. Base on a comparison of method in the study [30]. ADASYN 

does not always produce the best result on all dataset. This show that the effectiveness of ADASYN is greatly 

influenced by the level of imbalance and characteristics of the dataset. Therefore, the high accuracy of SVM and 

RFE is not because ADASYN does not work, but because mathematically reducing relevant features has a greater 

impact on the stability of the SVM margin than adding synthetic samples. From a critical perspective, the limited 

incremental benefit of ADASYN in this study suggests that its impact may be more pronounced in settings with 

more extreme imbalance or higher noise levels than in the present dataset. Moreover, because ADASYN 

introduces synthetic minority instances in feature space, there is a non-trivial risk of overfitting to oversampled 

regions and of blurring the distinction between real and synthetic clinical patterns, which can complicate 

interpretability and clinicians’ trust in the model’s decisions. These considerations highlight the need for external 

validation on other imbalanced medical datasets and for careful monitoring of performance degradation when 

synthetic oversampling is applied beyond the original training distribution. 
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Fourth, the 80:20 data ratio provides a good balance between training data and test data. With a large amount 

of training data, SVM can form a more stable hyperplane, while the size of the test data is still sufficient to produce 

accurate evaluations.  Because it is considered capable of balancing model complexity and generalization ability, 

the 80:20 ratio is often used in machine learning research.  As a result, this ratio is one of the best configurations 

of the models tested in this study and provides consistent results. Even so, the evaluation protocol in this work is 

still limited to hold-out splits; additional experiments using k-fold cross-validation and independent external 

datasets would be valuable to further assess the robustness and generalizability of the proposed configuration. 

VI. CONCLUSIONS 

This study demonstrates that integrating Support Vector Machine (SVM) with Recursive Feature Elimination 

(RFE) substantially enhances the accuracy and stability of thyroid disease classification. The best performance, 

reaching an accuracy of 98.39%, was achieved when the SVM model utilized the 20 most influential features, 

including On thyroxine, thyroid surgery, on antithyroid medication, I131 treatment, TSH measured, Psych, Query 

hyperthyroid, Query on thyroxine, FTI measured, T4U measured, Lithium, Query hypothyroid, Tumor, Sick, 

TSH, Goitre, T3 measured, Pregnant, T4U, and Sex. The retention of these clinically relevant variables enables 

the classifier to construct a clearer and more discriminative hyperplane, thereby reducing noise from redundant 

attributes. This confirms that targeted feature selection not only reduces computational complexity but also 

strengthens the overall robustness of the classification process, providing a model that can be integrated into 

clinical workflows as a decision-support tool for flagging high-risk patients, prioritizing further testing, and 

promoting earlier intervention in thyroid disease management. 

Additionally, the study highlights that while RFE contributes most significantly to accuracy improvement, the 

ADASYN oversampling technique remains essential for enhancing minority-class recognition. By generating 

synthetic samples in difficult-to-learn regions, ADASYN improves recall, precision, and F1-score, resulting in a 

model that performs more equitably across both classes and reduces the likelihood of missed diagnoses in 

imbalanced data settings. The combined effects of feature refinement and class rebalancing produce a harmonized 

model capable of accurately identifying thyroid disorders even within an imbalanced dataset, offering a practical 

framework that can be further developed for deployment in hospital information systems or screening programs. 

Future research should validate this approach on external thyroid datasets from different institutions and 

populations, systematically compare RFE with other feature-selection techniques (such as LASSO or tree-based 

embedded methods), and explore alternative SVM kernels as well as comparisons with ensemble and deep 

learning models to more comprehensively position this framework within the broader landscape of medical 

diagnostic tools. 
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