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ABSTRAK 

 

Metode Salihu digunakan untuk mencari determinan matriks ordo 𝑛 × 𝑛 (𝑛 ≥ 3). Tujuan 

dari penelitian ini adalah menentukan bentuk umum determinan matriks RFMLRcircr 

Ordo 𝑛 ×  𝑛 (𝑛 ≥  3) meggunakan metode Salihu. Dalam menentukan bentuk umum 

determinan matriks RFMLRcircr Ordo 𝑛 ×  𝑛 (𝑛 ≥  3) menggunakan metode Salihu 

terlebih dahulu diduga bentuk umum determinan interior dan determinan unik matriksnya 

berdasarkan pola determinan yang didapat, kemudian dilakukan pembuktian 

menggunakan induksi matematika. Setelah dilakukan pembuktian determinan interior dan 

determinan unik dalam metode Salihu untuk matriks RFMLRcircr Ordo 𝑛 ×  𝑛 (𝑛 ≥  3), 

maka diperoleh bentuk umum determinan matriks RFMLRcircr Ordo𝑛 ×  𝑛 (𝑛 ≥

 3)yaitu  |𝐴𝑛| = (1 − (−1)𝑛). 𝑎𝑛 − (−1)𝑛. 𝑎𝑛       , 𝑛 ≥ 3 dan diaplikasikan dalam 

bentuk soal.  
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ABSTRACT 

The Salihu method is used to find the determinants of matrices RFMLRcircr Ordo 𝑛 ×
 𝑛 (𝑛 ≥  3)  of order 𝑛 × 𝑛 (𝑛 ≥ 3). The purpose of this study was to determine the 

general form of determinants of matrices) using the Salihu method. In determining the 

general form of determinants of RFMLRcircr Ordo 𝑛 ×  𝑛 (𝑛 ≥  3) using the Salihu 

method, it is first suspected that the general form of interior determinants and unique 
determinants of matrices is based on the acquired determinant pattern, then proof is 

carried out using mathematical induction. After proving the interior determinants and 

unique determinants in the Salihu method for RFMLRcircr Ordo 𝑛 ×  𝑛 (𝑛 ≥  3), the 

general form of determinants of RFMLRcircr Ordo 𝑛 ×  𝑛 (𝑛 ≥  3) |𝐴𝑛| = (1 −
(−1)𝑛). 𝑎𝑛 − (−1)𝑛. 𝑎𝑛       , 𝑛 ≥ 3and applied in the form of a question.  
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BAB I 

PENDAHULUAN 

 

1.1 Latar Belakang 

Pe$nggu$naan matriks su $dah be$rke$mbang pe$sat hingga e$ra digital saat ini dan 

te$lah dirasakan se $jak lama manfaatnya. Misalnya pe $ne$rapan matriks 

padake$hidu$pan se$hari-hari yaitu $ dalam de$skrpsi dan e$nkripsi gambar pada 

smartphone$ (Android dan iOS). Te$rdapat be$be$rapa je$nis matriks circu$lant yang 

dike$nal diantaranya matriks 𝐹𝐿𝐷𝑐𝑖𝑟𝑐𝑟 [1], matriks 𝐹𝐿𝑆𝑐𝑖𝑟𝑐𝑟 [2], matriks 

𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑟 (Row First-Minu$sLast Right Circu$lant) [3], matriks 𝑅𝐿𝑀𝐹𝐿𝑐𝑖𝑟𝑐𝑟 

(Row Last-Minu$s-First Le$ft Circu$lant) [3], matriks 𝑅𝑆𝐹𝑃𝐿𝑅𝑐𝑖𝑟𝑐𝑟 (Row Ske $w 

First-Plu$s- Last Right Circu $lant) [4], matriks 𝑅𝑆𝐿𝑃𝐹𝐿𝑐𝑖𝑟𝑐𝑟 (Row Ske$w-Last-

Plu$s-First Le$ft Circu$lant) [5], matriks 𝑅𝐹𝑃𝑟𝐿𝑅𝑐𝑖𝑟𝑐𝑟 (Row First-Plu$s-rLast Right 

Circu$lant) [6], dan matriks 𝑅𝐿𝑃𝑟𝐹𝐿𝑐𝑖𝑟𝑐𝑟 (Row Last-Plu$s-rFirst Le$ft Circu$lant)  

 Dalam me$nye$le$saikan pe$rmasalahan matriks circu$lant. salah satu$ ilmu $ 

aljabar line $ar yang se$ring digu$nakan yaitu $ de$te$rminan. Me$tode$ yang se$ring 

digu$nakan se$lama ini yaitu $ me$tode$ sarru$s [7], Ope$rasi Baris E $le$me$nte$r (OBE$) [8], 

Ope$rasi Kolom E $le$me$nte$r (OKE $) [9], atu$ran se$gitiga[10], e$kspansi kofaktor [11], 

atu$ran crame$r [12], dan re$du$ksi baris [13]. Se$lain me$tode$ diatas te$rdapat be$brapa 

me$tode$ lainnya, yaitu $ me$tode$ konde$nsasi Chio [14], konde$nsasi Dodgson [15], 

dan gabu$ngan dari ke$du$anya yang dise$bu$t me$tode$ Salihu $[16]. 

Pada tahu$n 2019 me$tode$ salihu$ digu$nakan dalam pe$ne$litian [17] u$ntu$k 

me$ne$ntu$kan de$te$rminan dari matriks 𝐹𝐿𝑆𝑐𝑖𝑟𝑐𝑟 be$ntu$k khu$su$s: 

𝐴𝑛

[
 
 
 
 
 
0 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 𝑟𝑎 + 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑟𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎]

 
 
 
 
 

, ∀ 𝑎 ≠ 0, 𝑎, 𝑟 ∈



 

2 

 

Dipe$role$h be$ntu$k u$mu$m de$te$rminan matriks se$bagai be$riku$t : 

|𝐴𝑛| =  (−1)𝑛−3𝑟𝑛−1𝑎𝑛 ,    𝑛 ≥  3 

Ke$mu$dian dalam pe$ne$litian [18] pada tahu $n 2020 me$ne$ntu$kan de$te$rminan 

dari matriks khu $su$s 𝐹𝐿𝑆𝑐𝑖𝑟𝑐𝑟 𝑛 ×  𝑛, (𝑛 ≥  3) me$nggu$nakan e$kspansi kofaktor, 

de$ngan matriks khu $su$snya adalah:  

𝐴𝑛 =

[
 
 
 
 
 
 
 
 
 
 
𝑎 𝑎 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎 0
0 𝑎 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎 𝑎
𝑟𝑎 𝑎 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎 𝑎
𝑟𝑎 𝑟𝑎 + 𝑎 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎 𝑎
𝑟𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎 𝑎
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮

𝑟𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎 𝑎
𝑟𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎 𝑎
𝑟𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎 𝑎 𝑎 𝑎
𝑟𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑎 𝑎 𝑎
𝑟𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑎 𝑎]

 
 
 
 
 
 
 
 
 
 

, ∀ 𝑎, ∈ (1.1) 

be$rdasarkan pe$ne$litian didapatkan be$ntu $k u $mu$m de$te$rminan matriksnya 

se$bagai be$riku$t: 

|𝐴𝑛|  =  𝑟𝑛−2𝑎𝑛 ,     𝑛 ≥  3 

Pada pe$ne$litian [19] me$mbahas de$te$rminan matriks de$ngan me$nggu$nakan 

e$kspamsi kofaktor de $ngan be$ntu$k khu$su$s matriks 𝐹𝐿𝐷𝑐𝑖𝑟𝑐𝑟 𝑛 ×  𝑛, (𝑛 ≥  3) : 

 𝐴𝑛 =

[
 
 
 
 
 
 
 
 
 
 
0 0 0 𝑥 0 ⋯ 0 0 0 0 0
0 0 0 0 𝑥 ⋯ 0 0 0 0 0
0 0 0 0 0 ⋯ 0 0 0 0 0
0 0 0 0 0 ⋯ 0 0 0 0 0
0 0 0 0 0 ⋯ 0 0 𝑥 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 0 0 0 𝑥 0
0 0 0 0 0 ⋯ 0 0 0 0 𝑥
𝑟𝑥 −𝑟𝑥 0 0 0 ⋯ 0 0 0 0 0
0 𝑟𝑥 −𝑟𝑥 0 0 ⋯ 0 0 0 0 0
0 0 𝑟𝑥 −𝑟𝑥 0 ⋯ 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 

 

 
Dan menghasilkan bentuk umum sebagai berikut: 

|𝐴𝑛| =  (−1)𝑛+1𝑟3𝑥𝑛 ,    𝑛 ≥  4 

 Se$lain be$be$rapa pe$ne$litian te$ntang matriks circu$lant diatas , te$rdapat ju$ga 

matriks circu$lant lain yaitu$ matriks 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(Row First-Minu$s-Last Right 

Circu$lant) dalam pe$ne$litian [3] de$ngan bentuk umum berikut: 

𝐴 =

[
 
 
 
 
𝑎1 𝑎2 ⋯ 𝑎𝑛

𝑎𝑛 𝑎1 − 𝑎𝑛 ⋯ 𝑎𝑛−1

⋮ ⋮ ⋱ ⋮
𝑎3 𝑎4 − 𝑎3 ⋯ 𝑎2

𝑎2 𝑎3 − 𝑎2 ⋯ 𝑎1 − 𝑎𝑛]
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Dapat ditulis dengan 𝐴 = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝑎1, 𝑎2, 𝑎3 ⋯ ,𝑎𝑛). 

Berdasarkan beberapa penelitian di atas, penulis tertarik menggunakan 

metode salihu untuk menghitung determinan matriks 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 bentuk 

khusus berikut: 

𝐴𝑛 =

[
 
 
 
 
 
 
𝑎 𝑎 0 ⋯ 0 0 0
0 𝑎 𝑎 ⋯ 0 0 0
0 0 𝑎 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 𝑎 𝑎 0
0 0 0 ⋯ 0 𝑎 𝑎
𝑎 −𝑎 0 ⋯ 0 0 𝑎]

 
 
 
 
 
 

, ∀𝑎 ≠ 0, 𝑎 ∈ ℝ         (1.2) 

Dapat ditulis dengan 𝐴𝑛 = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟 

Dengan judul penelitian yaitu “Determinan Matriks 𝑹𝑭  Ordo 𝒏 ×  𝒏 (𝒏 ≥  𝟑) 

Menggunakan Metode Salihu”. 

1.2 Rumusan Masalah 

Be$rdasarkan latar be$lakang diatas maka diru$mu$skan pe$rmasalahan, yakni 

bagaimana be$ntu$k u$mu$m de$te$rminan matriks RFMLRcircr Ordo 𝑛 ×  𝑛 (𝑛 ≥  3) 

de$ngan me$nggu$nakan metode salihu?. 

1.3 Batasan Masalah 

Be$rdasarkan ru$mu$san masalah maka dibe$ri batasan pe$rmasalahan, yakni 

u$ntu$k de$te$rminan matriks inte $rior dalam me $tode$ salihu$ tidak be$rnilai 0. 

1.4 Tujuan Penelitian 

Tujuan penelitian ini yaitu mendapatkan bentuk umum determinan dari 

matriks RFMLRcircr Ordo 𝑛 ×  𝑛  (𝑛 ≥  3) dengan bantuan metode salihu. 

1.5 Manfaat Penelitian 

Harapan pe$nu$lis laporan ini dapat be$rmanfaat bagi pe$mbaca, be$be$rapa 

manfaat yang diharapkan adalah : 

1. Bagi pe$nu$lis u$ntu$k me$mpe$rdala, pe$mahaman me$nge$nai matriks, te$rkhu$su $s 

pada de$te$rminan matriks me $nggu$nakan me$tode$ salihu$. 

2. Bagi pe$mbaca se$bagai re$fre$nsi dalam pe$nu$lisan se$lanju$tnya me$nge$nai matriks 

RFMLRcircr 
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1.6 Sistematika Penulisan 

 Adapun sistematika penulisan tugas akhir ini disusun untuk membahas 

sejumlah permasalahan inti yang akan dijelaskan melalui beberapa tahap secara 

sistematis yaitu: 

BAB I PENDAHULUAN 

Pada bab ini me$mbahas me$nge$nai hal-hal dasar pe$ne$litian se$pe$rti latar 

be$lakang yang me$mu$at pe$ne$litian te$rdahu$lu$ yang be$rhu$bu$ngan de$ngan 

me$tode$ salihu$, ru$mu$san masalah, batasan masalah, tu$ju$an dalam 

pe$ne$litian, manfaat dari pe $ne$litian hingga siste $matika pe$ne$litian. 

BAB II LANDASAN TEORI 

Bab ini mengkaji tentang teori yang mendasari penelitian terkait 

matriks, determinan matriks, matriks RFMLRcircr, e$kspansi kofaktor, 

dan juga metode salihu. 

BAB III METODE PENELITIAN 

Bab ini be$risi tahapan-tahapan penelitian untuk menentukan bentuk 

umum determinan matriks RFMLRcircr Ordo 𝑛 ×  𝑛 (𝑛 ≥  3)  

menggunakan metode salihu. 

BAB IV PEMBAHASAN  

Bab ini berisi penjelasan atau uraian jelas dalam menentukan bentuk 

umum determinan matriks RFMLRcircr Ordo 𝑛 ×  𝑛 (𝑛 ≥  3)  

menggunakan metode salihu. Sesuai tahapan pada bab sebelumnya  

BAB V PENUTUP 

Bab ini berisi kesimpulan dan saran dari penulis berdasarkan hasil 

penelitian 
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BAB II 

LANDASAN TEORI 

2.1 Matriks 

Definisi 2.1 [20] Matriks circu$lant me$ru$pakan su$atu$ matriks 𝑛 × 𝑛 yang dibe$ntu$k 

dari 𝑛 ve$ktor dan hanya me$mpu$nyai satu$ inpu$t dibaris pe$rtama. Tiap e$ntri pada 

baris se$be$lu$mnya be$rpindah satu $ posisi ke$ kanan, se$hingga baris dan e$ntri 

be$riku$tnya sama di se$panjang diagonal matriks. Matriks circu$lant biasanya dipakai 

dalam pe$ne$ye $le$saian pe$rsamaan polinomial. U$ntu$k se$tiap 𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑛−1 ∈ 

𝐶𝑛×𝑛,matriks circu$lant (𝐴𝑖,𝑗)𝑛×𝑛 yang dinotasikan de$ngan 𝑐𝑖𝑟𝑐𝑟(𝑐0, 𝑐1, 𝑐2, … , 

𝑐𝑛−1) Dapat ditu$liskan se$bagai be$riku$t [21]. 

(𝐴𝑖,𝑗)𝑛×𝑛 = 𝐴 = 𝐴 =

[
 
 
 
 

𝐶0 𝐶1 ⋯ 𝐶𝑛−1

𝐶𝑛−1 𝐶0 ⋯ 𝐶𝑛−2

⋮ ⋮ ⋱ ⋮
𝐶2 𝐶3 ⋯ 𝐶1

𝐶1 𝐶2 ⋯ 𝐶0 ]
 
 
 
 

 

Contoh 2.1 

Be$rdasarkan be$ntu$k u$mu$m matriks di atas dibe$rikan matriks 𝐴 =

 𝐶𝑖𝑟𝑐𝑟(2,3,3,5,4) de$ngan ordo 𝑛 =  5 

 𝐴5×5 =

[
 
 
 
 
2 3 3 5 4
4 2 3 3 5
5
3
3

4
5
3

2
4
5

3
2
4

3
3
2]
 
 
 
 

 

Matriks circu$lant me$miliki be$be$rapa je$nis matriks diantaranya ialah matriks 

RFMLRcircfr yang akan di bahas dalam pe$ne$litian ini 

   

2.2 Matriks RFMLRcircfr 

Definisi 2.2  [22] Matriks RFMLRcircfr me$ru$pkan matriks pe$rse$gi de$ngan be$ntu$k 

sebagai berikut: 

𝐴 =

[
 
 
 
 
𝑎1 𝑎2 ⋯ 𝑎𝑛

𝑎𝑛 𝑎1 − 𝑎𝑛 ⋯ 𝑎𝑛−1

⋮ ⋮ ⋱ ⋮
𝑎3 𝑎4 − 𝑎3 ⋯ 𝑎2

𝑎2 𝑎3 − 𝑎2 ⋯ 𝑎1 − 𝑎𝑛]
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Te$rlihat bahwa matriks te$rse$bu$t me$mpu$nyai baris pe$rtama yang be$ru$bah- 

u$bah dan baris lainnya dipe $role$h dari baris se$be$lu$mnya se$su$ai de$ngan atu$ran 

be$riku$t: Dapatkan baris (𝑖 +  1)  −  𝑠𝑡 de$ngan me$ngu$rangkan e$le$me$n pe$rtama 

baris ke$-I dari e$le$me$n pe$rtama baris ke$-I, ke$mu$dian me$ngge$se$r e$le$me$n baris ke$-I 

(se$cara siklis) satu $ posisi ke$kanan. Je$lasnya matriks RFMLRcircfr dite$ntu$kan ole$h 

baris pe$rtamanya. 

 

2.3 Determinan Matriks 

Fu$ngsi khu$su$s yang me$nghu$bu$ngkan bilangan re $al de$ngan su$atu$ matriks 

pe$rse$gi dise$bu$t de$ngan De$te$rminan. Be$riku$t hal-hal yang pe$nting be$rhu$bu$ngan 

de$ngan de$te$rminan. 

Definisi 2.3 [23] pe$rmu$tasi pada himpu$nan bilangan bu $lat (1,2,… , 𝑛) ialah 

su$su$nan dari bilangan bu $lat te$rse$bu$t se$su$ai atu$rana tanpa pe$nghilangan atau $ 

pe$ngu$langan. 

Teorema 2.1 [23] misal A adalah matriks bujur sangkar, 

a. Jika A mempunyai baris baris atau kolom bilangan nol, maka det(𝐴) = 0 

b. det(𝐴) = det(𝐴)𝑇
 

Teorema 2.2 [23] Jika A adalah matriks se$gitiga 𝑛 × 𝑛 maka de$t (𝐴) adalah hasil 

kali entri-entri pada diagonal utama matriks tersebut yaitu det(𝐴) = 𝑎11 × 𝑎2 ×

…× 𝑎𝑛𝑛. 

Teorema 2.3 [23] apabila A me$ru$pakan matriks bu$ju$r sangkar de$ngan du$a baris 

atau$ kolom yang proposional, maka be $rlaku$ 𝑑𝑒$𝑡(𝐴)  =  0. 

Teorema 2.4 [23] Jika A dan B me$ru$pakan matriks bu$ju$r sangkar de$ngan ordo 

sama, maka 𝑑𝑒$𝑡(𝐴𝐵)  =  𝑑𝑒$𝑡(𝐴) 𝑑𝑒$𝑡(𝐵). 

Teorema 2.5 Jika A bisa dibalik, maka 𝑑𝑒$𝑡(𝐴−1) =
1

de$t 𝐴1 
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2.4 Metode Salihu 

Arme$nd Salihu adalah penemu salihu metode ini dihasilkan be $rdasarkan 

pada metode dodgson dan metode chio. Be$rikut beberapa hal penting dalam 

metode salihu : 

a. Determinan Interior 

Me$ru$pakan su$atu$ de$te$rminan de$ngan ordo (𝑛 −  2)  × (𝑛 −  2) dari su$atu$ 

matriks be$rordo 𝑛 ×  𝑛 (𝑛 ≥  3) yang didapat de$ngan me$nyingkirkan baris 

pe$rtama, lalu kolom pe$rtama, baris te$rakhir, dan kolom te$rakhir [2]. 

𝐴 =

[
 
 
 
 
𝑎11 𝑎12

𝑎13 𝑎14 𝑎15

𝑎21 𝑎22
𝑎23 𝑎24 𝑎25

𝑎31

𝑎41

𝑎51

𝑎32

𝑎42

𝑎52

𝑎33

𝑎43

𝑎53

𝑎34

𝑎44

𝑎54

𝑎35

𝑎45

𝑎55]
 
 
 
 

 

Maka determinan interiornya yaitu: 

𝐴 = [

𝑎22 𝑎23 𝑎24

𝑎32 𝑎33 𝑎34

𝑎42 𝑎43 𝑎44

] 

b. Determinan Unik 

De$te$rminan u$nik me$ru$pakan de$te$rminan yang be$rordo (𝑛 −  1)  × (𝑛 −

 1) dari se$bu$ah matriks be$rordo 𝑛 ×  𝑛 (𝑛 ≥  3). Te$rdapat e$mpat bu$ah 

de$te$rminan u$nik dalam me$tode salihu $[2], yaitu $ |𝐶|, |𝐷|, |𝐸| 𝑑𝑎𝑛 |𝐹| dipe$role $h 

de$ngan cara 

|𝐵| : Me$nghilangkan baris pe$rtama, kolom pe$rtama, baris te$rakhir, kolom te$rakhir 

|𝐶| : Me$nghilangkan baris te$rakhir, kolom te$rakhir 

|𝐷 $| : Me$nghilangkan baris terakhir, kolom pertama 

|𝐸| : Me$nghilangkan baris pe$rtama, kolom terakhir  

⌈𝐹⌉ : Menghilangkan baris Pertama, kolom pertama 

Misalkan matriks A yang be $ru$ku$ran 5 × 5: 

𝐴 =

[
 
 
 
 
𝑎11 𝑎12

𝑎13 𝑎14 𝑎15

𝑎21 𝑎22
𝑎23 𝑎24 𝑎25

𝑎31

𝑎41

𝑎51

𝑎32

𝑎42

𝑎52

𝑎33

𝑎43

𝑎53

𝑎34

𝑎44

𝑎54

𝑎35

𝑎45

𝑎55]
 
 
 
 

 

Maka determinan uniknya yaitu: 
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𝐵 = |
|

𝑎11 𝑎12
𝑎13 𝑎14 𝑎15

𝑎21 𝑎22
𝑎23 𝑎24 𝑎25

𝑎31

𝑎41

𝑎51

𝑎32

𝑎42

𝑎52

𝑎33

𝑎43

𝑎53

𝑎34

𝑎44

𝑎54

𝑎35

𝑎45

𝑎55

|
| = |

𝑎22 𝑎23 𝑎24

𝑎32 𝑎33 𝑎34

𝑎42 𝑎43 𝑎44

| 

𝐶 = |
|

𝑎11 𝑎12
𝑎13 𝑎14 𝑎15

𝑎21 𝑎22
𝑎23 𝑎24 𝑎25

𝑎31

𝑎41

𝑎51

𝑎32

𝑎42

𝑎52

𝑎33

𝑎43

𝑎53

𝑎34

𝑎44

𝑎54

𝑎35

𝑎45

𝑎55

|
| = |

𝑎11 𝑎12
𝑎13 𝑎14

𝑎21 𝑎22
𝑎23 𝑎24

𝑎31

𝑎41

𝑎32

𝑎42

𝑎33

𝑎43

𝑎34

𝑎44

|   𝐷 =

|
|

𝑎11 𝑎12
𝑎13 𝑎14 𝑎15

𝑎21 𝑎22
𝑎23 𝑎24 𝑎25

𝑎31

𝑎41

𝑎51

𝑎32

𝑎42

𝑎52

𝑎33

𝑎43

𝑎53

𝑎34

𝑎44

𝑎54

𝑎35

𝑎45

𝑎55

|
| = |

𝑎12 𝑎13
𝑎14 𝑎15

𝑎22 𝑎23
𝑎24 𝑎25

𝑎32

𝑎42

𝑎33

𝑎43

𝑎34

𝑎44

𝑎35

𝑎45

| 

𝐸 = |
|

𝑎11 𝑎12
𝑎13 𝑎14 𝑎15

𝑎21 𝑎22
𝑎23 𝑎24 𝑎25

𝑎31

𝑎41

𝑎51

𝑎32

𝑎42

𝑎52

𝑎33

𝑎43

𝑎53

𝑎34

𝑎44

𝑎54

𝑎35

𝑎45

𝑎55

|
| = |

𝑎21 𝑎22
𝑎23 𝑎24

𝑎31 𝑎32
𝑎33 𝑎34

𝑎41

𝑎51

𝑎42

𝑎52

𝑎43

𝑎53

𝑎44

𝑎54

| 

𝐹 = |
|

𝑎11 𝑎12
𝑎13 𝑎14 𝑎15

𝑎21 𝑎22
𝑎23 𝑎24 𝑎25

𝑎31

𝑎41

𝑎51

𝑎32

𝑎42

𝑎52

𝑎33

𝑎43

𝑎53

𝑎34

𝑎44

𝑎54

𝑎35

𝑎45

𝑎55

|
| = |

𝑎22 𝑎23
𝑎24 𝑎25

𝑎32 𝑎33
𝑎34 𝑎35

𝑎42

𝑎52

𝑎43

𝑎53

𝑎44

𝑎54

𝑎45

𝑎55

| 

Adapu$n te$ore$ma yang be$rhu$bu$ngan de$ngan me$tode$ salihu$ yaitu$ : 

Teorema 2.6 [24] Se$tiap de$te$minan de$ngan ordo 𝑛 ×  𝑛 (𝑛 >  2) bisa 

dire$du$ksi de$te$rminan ordo 2 ×  2 de$ngan me$nghitu$ng 4 de$te$rminan be$rordo 

(𝑛 −  1)  ×  (𝑛 − 1) dan se$bu$ah de$te$rminan yang be$rordo (𝑛 −  2)  × (𝑛 −

 2), de$ngan atu$ran (𝑛 − 2) ×  (𝑛 −  2)  ≠  0. 

Be$ntu$k u$mu$m me$tode$ salihu$ dalam me$nghitu$ng de$te$rminan dari matriks be$rordo 

𝑛 ×  𝑛 (𝑛 ≥  3) sebagai berikut: 

𝐴𝑛 = [

𝑎11 𝑎12
… 𝑎1𝑛

𝑎21 𝑎22
… 𝑎2𝑛

⋮
𝑎𝑚1

⋮
𝑎𝑚2

⋱
⋯

⋮
𝑎𝑚𝑚

] 

 

Maka: 

|𝐴𝑛| =
1

|𝐵𝑛−2|
 . |

|𝐶𝑛−1| |𝐷𝑛−1|

|𝐸𝑛−2| |𝐹𝑛−1|
| , |𝐵𝑛−2| ≠ 0 
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Dimana |𝐵𝑛−2| me$ru$pakan de$te$rminan inte$rior de$ngan ordo (𝑛 −  2)  ×  (𝑛 −

 2) se$dangkan |𝐶𝑛−1|, |𝐷𝑛−1|, |𝐸𝑛−2|, dan |𝐹𝑛−1| me$ru$pakan de$te$rminan u$nik 

ordo (𝑛 −  1) × (𝑛 −  1). 

Contoh 2.1 

Diberikan matriks A berukuran 7 × 7 tentukan Determinannya menggunakan 

Metode Salihu 

𝐴 =

[
 
 
 
 
 
 
𝑎 𝑎 0 0 0 0 0

0 𝑎 𝑎 0 0 0 0

0 0 𝑎 𝑎 0 0 0

0 0 0 𝑎 𝑎 0 0

0 0 0 0 𝑎 𝑎 0
0

𝑎

0

−𝑎

0

0

0

0

0

0

𝑎

0

𝑎

𝑎]
 
 
 
 
 
 

 

Mak determinan uniknya : 

𝐵 = ||

𝑎 𝑎 0 0 0

0 𝑎 𝑎 0 0
0

0

0

0

0

0

𝑎

0

0

𝑎

𝑎

𝑜

0

𝑎

𝑎

|| =  𝑎5 

𝐶 =
|

|

𝑎 𝑎 0 0 0 0

0 𝑎 𝑎 0 0 0

0 0 𝑎 𝑎 0 0

0 0 0 𝑎 𝑎 0

0 0 0 0 𝑎 𝑎

0 0 0 0 0 𝑎

|

|
=  𝑎6 

𝐷 =
|

|

𝑎 0 0 0 0 0

𝑎 𝑎 0 0 0 0

0 𝑎 𝑎 0 0 0

0 0 𝑎 𝑎 0 0

0 0 0 𝑎 𝑎 0

0 0 0 0 𝑎 𝑎

|

|
=  𝑎6 
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𝐸 =
|

|

0 𝑎 𝑎 0 0 0

0 0 𝑎 𝑎 0 0

0 0 0 𝑎 𝑎 0

0 0 0 0 𝑎 𝑎

0 0 0 0 0 𝑎

𝑎 −𝑎 0 0 0 0

|

|
=  −𝑎6 

𝐹 =
|

|

𝑎 𝑎 0 0 0 0

0 𝑎 𝑎 0 0 0

0 0 𝑎 𝑎 0 0

0 0 0 𝑎 𝑎 0

0 0 0 0 𝑎 𝑎

−𝑎 0 0 0 0 𝑎

|

|
=  2𝑎6 

Maka: 

|𝐴| =
1

|𝐵|
 . |

|𝐶| |𝐷|
|𝐸| |𝐹|

| =
1

𝑎5
 . | 𝑎6 𝑎6

−𝑎6 2𝑎6
| = 3𝑎7 

2.5 Induksi Matematika 

Indu$ksi Mate$matika ialah se$bu$ah argu$me$n de$du$ktif dalam pe$mbu$ktian 

pe$rnyataan be$nar atau$ salah dalam su $atu$ himpu$nan bilangan bu $lat te$rkhu$su$s 

bilangan asli [25]. Misalkan 𝑝(𝑛) adalah pe$rnyataan pe$rihal bilangan bu$lat dan 

akan dibu$ktikan bahwa 𝑝(𝑛) te$rse$bu$t be$nar u$ntu$k se$mu$a bilangan bu $lat 𝑛 ≥  1, 

maka u$ntu$k me$mbu$ktikan pe$rnyataan ini, cu $ku$p de$ngan me$nu$nju$kkan bahwa : 

1. 𝑝(1) be$nar 

2. Jika 𝑝(𝑛) be$nar, maka 𝑝(𝑛 +  1) ju$ga be$nar, u$ntu$k se$tiap 𝑛 ≥  1. 

Langkah 1 dinamakan basis indu $ksi, se$dangkan langkah 2 dinakmakan 

langkah indu$ksi. Langkah indu$ksi be$risi asu$msi (andalan) yang me$nyatakan bahwa 

𝑝(𝑛) be$nar. Asu$msi te$rse$bu$t dinamakan hipote$sis indu$ksi. Bila su $dah ditu $nju$kkan 

ke$du$a langkah te$rse$bu$t be$nar maka su$dah dibu$ktikan bahwa 𝑝(𝑛) be$nar u$ntu$k 

se$mu$a bilangan bu $lat positif. 

Contoh  2.2 

Diberikan suatu matriks 𝐵𝑛−2, dimana 𝐵𝑛−2 adalah matriks interior dari suatu 

matriks 𝐹𝐿𝑆𝑐𝑖𝑟𝑐𝑟 𝐴𝑛 bentuk khusus pada Persamaan (1.1), maka nilai determinan 

matriks 𝐵𝑛−2 adalah: 
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|𝐵𝑛−2| =  (−1)𝑛−1𝑟𝑛−3𝑎𝑛−2,    𝑛 ≥  3 
Bukti: 

1. Basis indu$ksi. Akan ditunju$kkan 𝑝(3) benar. 

Perhatikan bahwa: 

𝑝(3)  ∶  |𝐵3|  = (−1)
3−1

𝑟3−3𝑎3−2 

=  𝑎 

Dengan memperhatikan determinan interior matriks 𝐹𝐿𝑆𝑐𝑖𝑟𝑐𝑟 orde 3 ×  3 

maka 𝑝(3) benar. 

2. Langkah indu$ksi. Asumsikan 𝑝(𝑘) benar, yaitu 𝑝(𝑘) ∶|𝐵𝑘| =

 (−1)𝑘−1𝑟𝑘−3𝑎𝑘−2, 𝑘 ≥  3 selanju$tnya akan dibu$ktikan 𝑝(𝑘 +  1) juga 

benar, yaitu 

𝑝(𝑘 +  1) ∶ |𝐵𝑘+1| =  (−1)𝑘𝑟𝑘−2𝑎𝑘−1,    𝑛 ≥  3 

Pembu$ktian dimulai dari : 

|𝐵𝑘+1| =
|

|

𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 + 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑎 ⋯ 𝑎 𝑎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎

|

|

𝑘+1

 

Dengan menggunakan ekspansi kofaktor sepanjang kolom pertama 

diperoleh: 
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= (−1)1+1𝑎 ||

𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎

𝑟𝑎 + 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎

𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎

||

𝑘

+ (−1)2+1(𝑟𝑎 + 𝑎) ||

𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎

𝑟𝑎 + 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎

𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎

||

𝑘

+ (−1)3+1(𝑟𝑎 + 𝑎) ||

𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎

𝑟𝑎 + 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎

𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎

||

𝑘

+ ⋯

+ (−1)𝑘+1(𝑟𝑎 + 𝑎) ||

𝑎 𝑎 ⋯ 𝑎 𝑎

𝑎 𝑎 ⋯ 𝑎 𝑎

𝑟𝑎 + 𝑎 𝑎 ⋯ 𝑎 𝑎

⋮ ⋮ ⋱ ⋮ ⋮

𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎

||

𝑘

+ (−1)(𝑘+1)+1(𝑟𝑎 + 𝑎) ||

𝑎 𝑎 ⋯ 𝑎 𝑎

𝑎 𝑎 ⋯ 𝑎 𝑎

𝑟𝑎 + 𝑎 𝑎 ⋯ 𝑎 𝑎

⋮ ⋮ ⋱ ⋮ ⋮

𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎

||

𝑘

 

Berdasarkan Teorema 2.3 suku ketiga sampai suku ke (𝑘 + 1) terdapat baris 

pertama dan baris kedua yang identik, sehingga nilai determinannya sama dengan 

0, maka hasil dari ekspansi kofaktor sepanjang kolom pertama adalah sebagai 

berikut: 

|𝐵𝑘+1| = 𝑎 |
|

𝑎 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 + 𝑎 𝑎 ⋯ 𝑎 𝑎

⋮ ⋮ ⋱ ⋮ ⋮
𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎

|
|

𝑘

− (𝑟𝑎 + 𝑎) ||

𝑎 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 + 𝑎 𝑎 ⋯ 𝑎 𝑎

⋮ ⋮ ⋱ ⋮ ⋮
𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑎 𝑎
𝑟𝑎 + 𝑎 𝑟𝑎 + 𝑎 ⋯ 𝑟𝑎 + 𝑎 𝑎

||

𝑘

+ 0 + ⋯+ 0 + 0 

Sehingga diperoleh: 

|𝐵𝑘+1| = 𝑎|𝐵𝑘| − (𝑟𝑎 + 𝑎)|𝐵𝑘| 

= 𝑎 − (𝑟𝑎 + 𝑎)|𝐵𝑘| 
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= 𝑎 − 𝑟𝑎 − 𝑎|𝐵𝑘| 

= −𝑟𝑎|𝐵𝑘| 

= −𝑟𝑎(−1)𝑘−1𝑟𝑘−3𝑎𝑘−2 

= (−1)𝑘𝑟𝑘−2𝑎𝑘−1 

Maka 𝑃(𝑘 + 1) benar. 

Dari langkah i dan ii sudah diperlihatkan dan dibuktikan benar. 
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BAB III 

METODOLOGI PENELITIAN 

 
Bab ini membahas cara mendapatkan determinan matriks RFMLRcircfr 

dengan metode salihu. Adapun langkah-langkahnya sebagai berikut: 

1. Diberikan matriks RFMLRcircfr   dengan bentuk khusus ordo 3 × 3 hingga 

ordo 10 × 10 yang dibentuk dari Persamaan (1.2). 

2. Menentukan nilai determinan dari matriks RFMLRcircfr mulai dari ordo 

3 × 3 hingga ordo 10 × 10, menggunakan metode Salihu. 

3. Menduga bentuk umum determinan interior, determinan unik, dan 

determinan dari matriks RFMLRcircfr   bentuk khusus dengan mengamati 

polanya. 

4. Membuktikan bentuk umum determina interior dan determinan unik matriks 

RFMLRcircfr   bentuk khusus dengan induksi matematika. 

5. Membuktikan bentuk umum determinan dari matriks RFMLRcircfr  bentuk 

khusus dengan pembuktian langsung Teorema salihu. 

6. Mengaplikasikan matriks RFMLRcircfr  bentuk khusus ke dalam contoh soal 

RFMLRcircfr. 
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BAB V 

KESIMPULAN 

5.1 Kesimpulan  

Dari pembahasan Bab IV, maka dapat disimpulkan bahwa bentuk umum 

determinan matriks 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟  ordo 𝑛 × 𝑛(𝑛 ≥ 3)  adalah  

𝐴𝑛 = (1 − (−1)𝑛). 𝑎𝑛 − (−1)𝑛 . 𝑎𝑛        , 𝑛 ≥ 3 

 Dengan bentuk umum determinan interiornya adalah 

|𝐵𝑛−2| = 𝑎𝑛−2         , 𝑛 ≥ 3 

Dan untuk bentuk umum determinan uniknya yaitu : 

|𝐶𝑛−1| = 𝑎𝑛−1 

|𝐷𝑛−1| = 𝑎𝑛−1 

|𝐸𝑛−1| = (−1)𝑛𝑎𝑛−1 

|𝐹𝑛−1| = (1 − (−1)𝑛). 𝑎𝑛−1 

5.2 Saran 

 Dalam pembahasan laporan ini penulis menjelaskan langkah-langkah 

serta cara menentukan bentuk umum determinan matriks𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟  ordo 𝑛 × 

𝑛(𝑛 ≥ 3) menggunakan metode Salihu. Bagi pembaca yang tertarik dengan topik 

penelitian ini disarankan dapat meneruskan pembahasan dengan menentukan 

invers atau determinan menggunakan metode lain. 
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