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Jurusan Matematika
Fakultas Sains dan Teknologi
Universitas Islam Negeri Sultan Syarif Kasim Riau
JI. HR. Soebrantas No. 155 Pekanbaru

ABSTRAK

Tugas akhir ini membahas tentang invers matriks antisimetris bentuk khusus ordo n x n. Penelitian
ini bertujuan untuk mendapatkan bentuk umum dari invers matriks antisimetris bentuk khusus ordo
n X n dengan menggunakan metode adjoin. Dalam menentukan invers suatu matriks antisimetris
bentuk khusus, terdapat tiga langkah yang dikerjakan. Pertama perhatikan bentuk pola determinan
dari cggatriks antisimetris bentuk khusus ordo 2 x 2 sampai 10 X 10 sehingga didapat bentuk
umummnya. Kedua, perhatikan bentuk dari pola matriks kofaktor matriks antisimetris bentuk khusus
ordom2 x 2 sampai 10 x 10 sehingga didapt bentuk umumnya. Ketiga, didapatkan bentuk umum
inve& matriks antisimetris bentuk khusus ordo n x n yang diperoleh berdasarkan Teorema (4.1) dan
Teorema (4.2). Pembuktian bentuk umum dari determinan, matriks kofaktor, dan invers matriks
menggunakan metode induksi matematika dan pembuktian langsung. Hasil yang diperoleh adalah
didapfitkannya bentuk umum dari determinan, matriks kofaktor dan invers dari matriks antisimetris
berbptituk khusus.

(=

=
Kat@Kunci : determinan, invers matriks, matriks kofaktor, matriks antisimetris, metode adjoin.
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§ Date of Final Exam : June 241 2025
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Department of Mathematics
Faculty of Science and Technology
State Islamic University of Sultan Syarif Kasim Riau
Soebrantas St. No. 155 Pekanbaru

ABSTRACT

This final project discusses the inverse of a special form antisymmetric matrix of order nxn. This
study aims to obtain the general form of the inverse of a special form antisymmetric matrix of order
nxn using the adjoint method. In determining the inverse of a special form antisymmetric matrix,
there are three steps that are carried out. First, pay attention to the form of the determinant pattern
of th,é_’,.épecial form antisymmetric matrix of order 2x2 to 10x10 so that the general form is obtained.
Secc&d, pay attention to the form of the cofactor matrix pattern of the special form antisymmetric
matrix of order 2x2 to 10x10 so that the general form is obtained. Third, the general form of the
inverse of the special form antisymmetric matrix of order nxn is obtained based on Theorem (4.1)
and #heorem (4.2). The proof of the general form of the determinant, cofactor matrix, and inverse
matrx uses the method of mathematical induction and direct proof. The results obtained are the
genﬁ(l form of the determinant, cofactor matrix and inverse of the special form antisymmetric
matrix,

o o
Key\@rds: determinant, inverse matrix, cofactor matrix, antisymmetric matrix, adjoint method.
-
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o Alhamdulillahirabbil ‘Aalamin. Segala Puji Syukur penulis panjatkan

keh@_irat Allah Subhanahu Wa Ta’ala yang telah memberikan rahmat dan hidayah-

Nya%ehingga penulis dapat menyelesaikan laporan Tugas Akhir ini dengan judul
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puIaZpenuIis haturkan shalawat beriringkan salam kepada junjungan alam yakni
»

Nabt Muhammad Shalallahu ‘Alaihi Wassalam yang telah mebawa kita dari zaman
o

jahigah atau zaman kebodohan menuju zaman yang sekarang ini zaman yang penuh

dengan ilmu pengetahuan dan teknologi.

°C> Rasa terimakasih penulis ucapkan kepada kedua orang tua yang selalu

menyebut nama penulis dalam do’anya serta telah banyak memberikan arahan,

nasehat dan mereka menjadi sosok inspirasi bagi penulis. Selain mereka, penulisan,

penyusunan dan penyelesaian Tugas Akhir ini tidak terlepas dari berbagai pihak
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5) dukungan yang telah diberikan kepada penulis.
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ASemua pihak yang telah membantu penulis secara langsung maupun tidak
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BAB |
PENDAHULUAN

1 Latar Belakang
Salah satu cabang ilmu aljabar linear yang menjadi pembahasan penting

N1t eydio yeH 0

galam ilmu matematika yaitu matriks. Sederet bilangan berbentuk persegi panjang
)Eng diapit oleh sepasang kurung siku dan memenuhi aturan-aturan tertentu yang
@Jerikan pada operasi ini disebut matriks [1][2]. Implementasi matriks sudah
lﬁnyak digunakan dalam kehidupan sehari-hari misalnya dalam bidang fisika,
%onomi, pertanian, teknik industri, dan lain sebagainya.

Q Salah satu pembahasan menarik dalam matriks yaitu menentukan invers
s%atu matriks. Invers matriks dikenal juga sebagai kebalikan dari suatu matriks. Ada
banyak metode yang digunakan untuk menentukan invers matriks diantaranya
Metode Faddeev, Metode Adjoin, Metode Dekomposisi Adomian, Metode Salihu,
dan lain sebagainya. Saat mencoba menemukan invers matriks, ukuran matriks itu
sendiri merupakan sumber kesulitan yang umum. Menemukan invers menjadi
semakin menantang seiring bertambahnya ukuran matriks. Oleh karena itu,
diperlukan formula yang sesuai dalam memperoleh invers dari matriks yang
berukuran lebih besar.

f;’,? Menentukan invers matriks telah banyak diteliti pada penelitian
seébelumnya. Pada tahun 2014 penelitian [3] dengan bentuk matriks Toeplitz

gbagai berikut :

?, 0 x -+ X
(o)
x 0
E T.=|. . Vx€R
5 X X - 0
@
Ea‘da penelitiannya didapat bentuk umum dari T,; ! adalah sebagai berikut:
—-(n-2) ..
L N aoox untuk i=j
I = (tij) - 1 K i .
—Dx untuk i # j.

eIy WIse)] JireAg uejng jo
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Qj): Pada tahun 2017 juga terdapat sebuah penelitian [4] yang telah membahas

mengenai invers matriks positif A, dengan matriks bentuk khusus disajikan
sebagai berikut:

0

—
Q-) b a a cee a
= c b a - a
— A,=|c ¢ b -+ :i|Vab,c€ER.
-~ . .
= l H H H ‘e aJ
— c ¢c ¢c ¢ b
Z
Padgypenelitian ini diperoleh hasil sebagai berikut:

= (—1)°}An-l D'ap-o"*@-b)" (D'a(b-o" (a-b)'  D"Pa-9'.@-bhH** D"la(b-’.(@@-b"?
2 |4nl 14n] |4n 14n| 14|
D - (c—b)° [GRONZE| D'a-9"*@=-bh° = (D’a(b-o’(@-hH"* (D" Pa(b-9.(@@-bhH"?
W) |4nl 14nl 14| 14x] 14n]

D’e-a" P (- (Deb-a)"*(c—b)° D1 An ._ ; D" %a(b- o). (a=b)""
B |4nl 14n] 14xl ' ] 145]
;G CDPeb-a)" i (c—b)° (D*e-a" (-b' (De®-a"E(C-b" | (D'ab-9"*(@-h)°
= |4nl 14n] 14n] ' 14n|
@ 1)°lAn-l D! a(b—c)"2(a—b)°
(= ’ ’ ’ = [An] [An]

Dl - @)’ (c=b)° Db -l e-h)"E D Peb-at@-9"t (Dl -a)" (e -b)° 1 Ans|

|4nl 14n] 14n] 14n| 14|

Selanjutnya pada tahun 2023 [5] meneliti mengenai invers matriks simetris
bentuk khusus dimana dalam penelitiannya menggunakan bentuk matriks sebagai
berikut:

ST T O

A, = Vb € R, b % 0.

ST O T
ST O T T
oS T T
ST T T

b b b b - 0
Ada%lm hasil dari penelitian tersebut adalah:

® ﬁ, untuk i=j
An_:—;[aij] = 1 ki ',Tl > 2.
5‘ —1)p’ untu L+ ]
(]
 Invers matriks juga diteliti [6] tentang invers matriks RSFPLRcircfr dengan

bengrk matriks sebagai berikut:
()

0 b b b b b
-b b b - b b b
-b 0 b - b b b
A, =+ + &+ =~ '+ i i|V0,bER.
-b 0 0 0 b b b
-b 0 0 0 O b b
‘—b 0 0 0 0 0 b

[ wiIse)] JIIeAg uejyng jo A31si1
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Dergan hasil akhir penelitiannya yaitu:
A§1:= :aij ; Lj=12.,n
T [pt —pt 0
Ao bt —b—ll
3 p~t —p71 0
Dengan,
~p jikai =jatau (i =n,j =1)
a; E1-p1, jika(j=i+1i=12.,n—1Datau(i=nj = 2)
Z\ 0, untuk i, j lainnya.
(CD Selanjutnya penelitian [7] meneliti mengenai invers matriks Toeplitz-
Hesgienberg dengan bentuk khusus berikut:
QO
b a O 0 0
;;? b b a 0 0
= H, = b b b O ?untuka,biOER.
b b b b a
b b b b b
Sehingga didapatkan hasil dari penelitian sebagai berikut:
r (_1)0 (—1)161 (_1)1a2 (_ 1)n—2an—2 (_ 1)n—1an—1-‘
(b—a) (b—a)? (b—a)3 (b—a)»t  b(b—a)"?!
D' (D% (-Dlab (-D)"3a"3p (-1 2a"2
(b—a) (b=a) (b-a)? (b—ay** (b—ay"t
0 (_1)1 (—1)0b (_1)n—4an—4b (_1)n—3an—3
Hy' = (b—a) (b—a)? b-a?  (b—a)y?
® ' ' (-1)° (-1
5 0 0 0 G- -0
® (-1 (=1)°
2 e b-a OG-0
g Terdapat banyak jenis-jenis matriks salah satunya yaitu matriks

antisimetris. Matriks antisimetris mempunyai struktur dan sifat yang khusus.

(=,
Menurut [8] Sebuah matriks dikatakan antisimetris jika pertukaran baris dan kolom

menzs;hasilkan negatif dari matriks aslinya menjadi AT = —A. Bentuk umum dari

matﬁks antisimetris adalah sebagai berikut:

0 A, Qi3

| —azq 0 ass

ATL - |_a31 _a32 0
—A1n  —A2pn 0

[ wiIse)] JireAg uejng jo A
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Az |
asn |, dengan a;; € R. (1.1)
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Q]): Berdasarkan latar belakang yang telah diuraikan di atas, penulis tertarik

untdk melakukan penelitian tentang matriks antisimetris bentuk khusus ordo n x n
(@)
dengan judul penelitian “Invers Matriks Antisimetris Bentuk Khusus Ordo n x

n” 8engan bentuk khusus sebagai berikut:

3
-1 0 a a a a a a aj
Al—=a 0 a a a a a a
O-a —a 0 a a a a a
Zl-a —a —a 0 a a a a
AT : : : : :|Va€eR (1.2)
7 : : : :
cl—-a —a —a -—a 0 a a a
Wi—-a —a —a -—a —a 0 a a
g;_ -a —a —a -—a —a —a 0 a
‘—a —a —a -—a —a —a —a 0
Py

1.22 Rumusan Masalah
Berdasarkan latar belakang yang telah diuraikan di atas, rumusan masalah
pada tugas akhir ini adalah bagaimana bentuk umum invers matriks antisimetris
bentuk khusus n X n pada Persamaan (1.2).
1.3 Batasan Masalah
Batasan masalah pada tugas akhir ini yaitu metode yang digunakan pada
penelitian ini adalah metode adjoin.
1.4  Tujuan Masalah
Tujuan dari penelitian ini adalah untuk mendapatkan bentuk umum invers
maty'_"'ks antisimetris bentuk khusus n X n yang sesuai dengan Persamaan (1.2).
1.5:. Manfaat Penelitian
:_ Berdasarkan rumusan masalah dan tujuan penelitian yang telah
dikemukakan diatas, maka manfaat yang dapat diambil dari penelitian ini adalah
seb@ai berikut:
a. Bagi penulis
Manfaat yang didapatkan melalui penelitian ini adalah memperdalam
pemahaman penulis tentang matriks, dan mengembangkan wawasan
disiplin ilmu yang dipelajari unruk mengkaji suatu permasalahan aljabar

linear khususnya dalam hal menyelesaikan invers matriks antisimetris.

[ WISeY] JIIeAQ ue}ng jo AJISIdAIL
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b.

Bagi lembaga pendidik
Penulis berharap penelitian ini dapat dijadikan referensi dalam
memecahkan masalah yang berkaitan dengan menentukan invers

matriks antisimetris.

1.63 Sistematika Penelitian

=

— Sistematika penulisan laporan tugas akhir ini terdiri dari pokok-pokok

permasalahan yang diuraikan menjadi beberapa bagian yaitu:

og
>
S N

BAB Il

BAE IV
o]

W
>

[ WISe)] JIIeAG ue}[ng Jo AJISIdATUFOIWER][S] 3)
<

PENDAHULUAN

Pendahuluan menguraikan tentang latar belakang pemilihan judul,
rumusan masalah, tujuan penelitian, manfaat penelitian, dan
sistematika penelitian.

LANDASAN TEORI

Bab ini berisi tentang teori dasar mengenai hal-hal yang dapat
digunakan sebagai acuan dan landasan untuk mengembangkan
penelitian ini. Konsep dan teori terkait perlu dijelaskan.

METODE PENELITIAN

Bab ini berisi tahapan-tahapan yang dilakukan penulis untuk
mencapai tujuan penelitian mulai dari metode penelitian, teknik
pengambilan data sampai ke tahapan penelitian.

PEMBAHASAN

Pembahasan berisikan penjelasan-penjelasan cara mencari bentuk
umum Invers matriks antisimetris bentuk khusus berordo n X n
menggunakan metode adjoin.

PENUTUP

Penutup berisikan kesimpulan dan saran dari semua pembahasan

dari hasil penelitian yang telah dilakukan.
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LANDASAN TEORI

Pada Bab Il ini berisi tentang teori-teori pendukung yang berkaitan dengan

lw e1dio yeH 6

matFiks antisimetris, determinan matriks, matriks kofaktor dan invers matriks.
~
(= . . )

2.1— Matriks Antisimetris
zZ

Sebgfum membahas apa itu matriks antisimetris, terlebih dahulu akan dijelaskan
meri’éenai matriks simetris, karena konsep antisimetris merupakan kebalikan dari

g ol
snm(iqls.
=
Definisi 2.1 [1] Suatu matriks bujursangkar A dikatakan simetris jika memenuhi:
A=AT.

Artinya, matriks tersebut sama dengan transpose-nya sendiri. Transpose (AT)
adalah matriks yang diperoleh dengan menukar elemen baris menjadi kolom dan

sebaliknya.

Contoh 2.1 Tunjukkan bahwa matriks berordo 4x4 berikut  adalah ~ matriks

simetris!
»
~1 3 5 0
o3 -2 2 1
4 o5 2 4 -3

M0 1 -3 2

Pen&elesaian :

T

-]
Akaé'dibuktikan dengan menggunakan Definisi 2.1 sebagai berikut:

3 5
-2 2 1
2 4
1 -3 2

AT

[ng 3o A31S1
S Ul W K

)

~ Aradalah matriks simetris.

[ urisey] Jjrredg
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Defﬁisi 2.2 [9] Matriks antisimetris adalah matriks yang transposenya negatif,

dendan perkataan lain bila A" = —A atau a;; = —a;; untuk semua i dan j. Mudah
(@)

dipahami bahwa semua elemen diagonal utama matriks antisimetris adalah = 0.

Berftuk umum dari matriks antisimetris sebagai berikut:

=
= [ 0 A Qg3 A1n]
=
[ —a21 0 Azz -+ Qan|
Ape=l-as; —az;; 0 a3y, |, dengan a;j € R. (1.1)
z | : oo
o l-a, —ay 0 -~ ol
-
Contoh 2.2 Tunjukkan bahwa matriks berordo 4x4 berikut adalah matriks
-~
antiSimetris!
=

0 2 =5 -3
-2 0 3 —4
5 -3 0 1
3 4 -1 O

A=

Penyelesaian :

Akan dibuktikan dengan menggunakan Definisi 2.2 sebagai berikut :

0 -2 5 3 0 2 -5 -3
r_|2 o -3 4|__|-2 0 3 -—4|__
=5 3 0 -1 5 -3 0 1 4
-3 -4 1 0 3 4 -1 0

L2 10)

=~ /Azadalah matriks antisimetris.

@
2.2:%T Determinan Matriks

pued @

Def@isi 2.3 [10] Misalkan A adalah matriks x n , fungsi determinan dinyatakan
dengan det , dan kita definisikan det(A) sebagai jumlah semua hasil kali elementer

ber@nda dari A . Determinan dari matriks dinotasikan dengan |A].

o , . : o 7
Contoh 2.3 Tentukan determinan dari matriks A = [ ]
ey 5 1

|A| =21-35=-13

[ wiisey] JrreAg uejng
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Q]): Ada beberapa metode yang digunakan untuk menentukan determinan yaitu

salaf satunya dengan menggunakan metode ekspansi kofaktor seperti yang penulis
(@)
akafy gunakan untuk menentukan determinan matriks antisimetris yang akan

dijeﬁskan pada pada definisi dan teorema berikut ini.
3
Definisi 2.4 [11] Jika A adalah matriks persegi, maka minor dari entri

=
a;j ginotasikan dengan M;; dan didefinisikan sebagai determinan dari submatriks

ang;_tersisa setelah baris ke- i dan kolom ke- j dihilangkan dari A . Bilangan

Yy
(—]Shf M;; dinotasikan dengan C;; dan disebut sebagai kofaktor dari entri a;;.
3
Q 1 1 -3
Contoh 2.4 diberikan matriks =2 6 3 |, maka
Q 3 5 2
o=

Penyelesaian :

Minor dari a,, adalah

M11 - [5 2 = _3
Dan kofaktor dari a,; adalah
Ciy = (=DM, = -3

72
Teogl;ema 2.1 [1] Determinan dari matriks A,,»,, dapat dihitung dengan mengalikan
entrﬂentri pada sebarang baris (atau kolom) dengan kofaktor-kofaktornya dan
w
mergumlahkan hasil kali yang diperoleh dimana untuk setiap 1 <i<ndan 1<
j=m
(=,
detB4) = ale]_j + aszzj + a3jC3j + -4+ ananj
(ekspansi kofaktor sepanjang kolom ke-j)

SI9A

T

det@l) = ai1Ci1_ +a;Cip + ai3§i3 + o+ apCin
o (ekspansi kofaktor sepanjang kolom ke-i).

[ wiisey] Jrredg uejng j
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L 3 2 1

Corﬁoh 2.5 hitung determinan dari matriks A; =1 5 —2| dengan
o 1 -2 6

me@gunakan ekspansi kofaktor sepanjang baris pertama dari A,
Q

Penyelesaian :
~ 3 2 1

5 -2 1 -2 1 5
gdet<A3)=[1 5 _2]=3[_2 22! 4l 5]
= 1 -2 6
2 =326—284+1—7=56
w

2.30";_ Invers Matriks

Def@isi 2.5 [1] Jika A adalah matriks bujur sangkar, yaitu matriks yangv memiliki
jumtah baris dan kolom yang sama, misalkan berukuran n x n. Kemudian, jika
terdapat sebuah matriks lain B yang juga berukuran sama dengan A, dan memenubhi
syarat bahwa hasil perkalian antara matriks A dan B, baik dalam urutan AB maupun
BA, menghasilkan matriks identitas I sehingga AB = BA = [ maka A disebut bisa
dibalik dan B disebut invers dari A.

w :
A = Jet(d) adj(A).

Defipisi 2.6 [1] Jika A adalah matriks berukuran n X n dan C;; adalah kofaktor dari

?é‘ Ci1 Cip -+ Cip

a;; Maka matriks C:Zl C?z Cf” disebut matriks kofaktor dari A. Transpose
= : P
= Cii Gz = Cin

dari’_énatriks ini disebut dengan adjoin A dan di notasikan adj(A). Syarat agar
matFks A mempunyai invers adalah matriks A matriks non singular (|A| # 0). Jika

matfjks A matriks singular (JA| = 0) maka matriks A tidak mempunyai invers.
w»n

Teorema 2.2 [12] Jika A adalah matriks yang dapat dibalik, maka A~1 =
=)

T adi(A).
=
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Corajs:oh 2.6 Diberikan matriks A =
-~

inveps!
©
Pernyelesaian :
=

Langkah pertama mencari determinan matriks A:
-~

5 2

. 0] buktikan bahwa A tidak memiliki

(&=
det() = |(5) g = (5.0)— (2.0) = 0
wm

b

d] adalah invers dari 4, maka ;

= H a
Langkah kedua misalkan € = [
A o

QO

ACE[
QO

=
o dlt =15 1

1 0
0 1

[2a0+ c Zb(;l- d] _ [(1) (1)]

Terlihat baris ke-2 kolom ke-2 dari AC tidak sama dengan 1. Sehingga matriks A

tidak memiliki invers. Maka terbukti Teorema 2.2

3 2 1
Corg}]oh 2.7 Diberikan matriksA =12 5 2], tentukan A=1!
et 6 5 4

j+¥)
—

®
Penyelesaian :
—

Y]
1. E\/Ienghitung nilai determinan A
(]
Si3 21
A= (2 5 2
®le 5 4
w
:o

y

S

2l 2 20 |2 5
-2 +

4 16 4 |6 5

0) —2(—4) +1(-20)

+8-20

g
)

I
[EEN

[ wiIse)] JrreAgou
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2.4Q:|): Induksi Matematika

o

Defimisi 2.7 [16] Misalkan bahwa p(n) adalah proposisi perihal bilangan bulat
pos%f dan ingin membuktikan bahwa p(n) benar untuk semua bilangan bulat

positif n. Untuk membuktikan proposisi ini, maka perlu dibuktikan bahwa:

= p(1) benar, dan
E Jika p(n) benar, maka p(n + 1) juga benar untuk setiap n > 1. Sehingga
=

¢n P(n) benar untuk semua bilangan bulat positif n.
—

Lanﬁkah 1 dinamakan basis induksi, sedangkan langkah 2 dinamakan langkah
ind@%si. Langkah induksi berisi asumsi (andaian) yang menyatakan bahwa p(n)
benas. Asumsi tersebut dinamakan hipotesis induksi. Bila sudah menunjukkan
kedﬁa langkah tersebut benar, maka sudah terbukti bahwa p(n) benar untuk semua

bilangan positif n.
Contoh 2.8 Buktikan bahwa untuk setiap bilangan bulat positif n, berlaku:

nn+1)

14243+ 4n=——

Bukti:

_ n(n+1)

Mlsg_rkan p(n)adalah 1+2+3+--4+n= >

Basis induksi: akan dibuktikan untuk n = 1 maka p(1) benar.

p(1) adalah; 1 = =1

1(1+1) _ 2
2 2

Jadi, p(1) benar.

Langkah induksi: diasumsikan bahwa p(k) benar untuk suatu bilangan asli
k,yaitu:14+2+3+ -+ k= @ Dan akan ditunjukkan bahwa p(n +

1) juga benar, yaitu: 1 +24+3+ -+ k+ (k+1)

Hal ini ditunjukkan sebagai berikut:

k(k+1)

1+2+3+---+k+(k+1)=< +(k+1)>

12
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BAB 1
METODE PENELITIAN

Metode penelitian yang digunakan dalam penyelesaian tugas akhir ini

adalah studi literatur dengan sumber pendukung referensi jurnal, buku referensi,
~

wehsite blog, artikel, internet dan lain sebagainya. Berikut diberikan langkah-

IangJ_Zah untuk mendapatkan invers yaitu:

nely e)ysng

[ WISe)] JIIeAG ue}ng Jo AJISIdATU) DIWE[S] 3}e}§

=

10.
11.

12.

Diberikan matriks antisimetris bentuk khusus yang dibentuk dari
Persamaan (1.2).

Menentukan nilai determinan matriks antisimetris berordo 2x2 sampai
10x10 menggunakan ekspansi kofaktor.

Menduga bentuk umum determinan matriks antisimetris berordo n x n.
Membuktikan bentuk umum determinan dari matriks antisimetris
menggunakan induksi matematika.

Menentukan kofaktor dari matriks antisimetris berordo 2x2 sampai
10x10.

Menduga bentuk umum kofaktor matriks antisimetris berordo n x n.
Membuktikan bentuk umum matriks kofaktor dari matriks antisimetris
ordo n X n menggunakan metode minor-kofaktor.

Menentukan bentuk umum adjoin dari matriks antisimetris bentuk
Khusus berordo 2x2 sampai 10x10.

Menentukan invers dari matriks antisimetris berordo 2x2 hingga 10x10
menggunakan metode adjoin.

Menduga bentuk umum invers matriks antisimetris berordo n x n.
Membuktikan bentuk umum invers matriks antisimetris berordo nxn
dengan pembuktian 4,4, = A;;A, = 1.

Mengaplikasikan bentuk invers secara umum dari matriks antisimetris

pada contoh soal.
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: BAB V

= PENUTUP

QO

$.1 Kesimpulan

Z Berdasarkan uraian pembahasan dan penjelasan pada bab-bab sebelumnya
(Epat diperoleh kesimpulan sebagai berikut:

w

cl.  Bentuk umum determinan matriks antisimetris bentuk khusus ordo n x n
2]

Q?;‘ pada persamaan (1.2) adalah sebagai berikut:

A ..

= |A,,| = det(4,,) = 0 untuk n ganijil

c

|A,,| = det(4,,) = a™ untuk n genap

2. Bentuk umum matriks kofaktor dari matriks antisimetris bentuk khusus ordo

n X n pada persamaan (1.2) n X n adalah sebagai berikut:

‘nery eysng NiN Jelfem 6ueA uebunuaday ueyibniaw yepn uediynbuad 'q
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[(71)7-71(17171 (=1)"a"t

(~1r-lant (—1)tant e

(~Dma™t  (—1)"lavt (—1)tett (71)7;71“714]

| (-DMa™t  (—D"lant (—DRat (D)t e (=)l (—D)tart (—DP et (—1)tar? |
I(il)nflanfl Dt (1)t (—1)nat LDt (D) lavt (—Dtart (1) et I
ngn-1 n-1,n-1 ngn-1 n-1,mn-1 n-1,n-1 ngn-1 n-1,n-1 ngn-1 ..
| (71):a -1 . a (71):(1 (G)) ; a (L) . a (71):a (-1 . a (71):a I
‘ 7| DM (D (et (—)vla CEDTIET e (D (- |UntUk n gan'“l
|(-1)-1amt (—1)ratt (=1l (—1)tet C(Dratt (=DMt (—Dtatt (—D)hhanl|
| ~Drha™! (- et (—Dhart (D)l e ()P lat (—1)e™! (-Dv et (—1)na! |
Dt (et (1) lat (—Dta e (<Dt (DM lart (—Drart (71)n71an71J
[ 0 Dt (1)t (—Dt e (1PNt (DRt (D) et (—1)att
| (=1 tamt 0 (D™t (=)™l e (—DMat (D"l (DRt (—1)" el
I (~Dra™t (—1)" gt 0 Dt e ()Pt (—DRat (D)t (—1)att |
l(,l)nj1an71 (,I)T.anq (71)nj1an71 0 . (_1)?‘17‘71 (_1)7;?1‘17171 (71)lnan71 (,nn.qanflluntuk n genap
I (71).nan71 (71)n;1an71 (,Dhanﬁ (71)nL1an71 0 (71)‘"11"* (_1)nl1an71 (~Drart
|~ -tamt (—1ytatt (—1)tlett (—1)tett e (—1)nlant 0 (=Dtamt  (—1 et
| (-Dma™! (- et (—Dha! (Dl e (mD"e™t (-1 lant 0 (-Drat |
l(il)nflanfl (Dt (Dt (cD)ta e (Dl (—Dtett (—1)nlant 0 |

eIy WIse)] JIIeAg uel[ng jo AJISISATY ) dTWER]S] 3}e}§

Bentuk umum invers matriks antisimetris bentuk khusus ordo n x n pada

persamaan (1.2) adalah sebagai berikut:

A;1 =tidak ada invers ,

untuk n ganjil
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A
Q
o P L o R o N oV o oS L G Lt
a a a a a a a

O (G P L o P oV oV o oV
== a a a a a a a
© (G N G Vi P L o N o i GV o
oz a a a a a a a
L (G GV G G Vi 0 .. Gutoevt eptt ewr

a a a a a a a
3 w@)t=| : : P : : : |untuk n genap
= (G D G S L G O K Gt O i (G M G L G O K
= e 2 T« a O Ve T T
= G N G Lt G Y L G Y o D 0 ™t or

a a a a a a a
= (G e Goe O S e D o O S G N o V)i T i
— a a a a a a a
=z (GO G G o o e G L G e G 0

a a a a a a a
(¢p)
5.2 Saran
2]
x -, . - -
© Dalam pembahasan yang telah di jabarkan, penulis dalam penelitian ini

%nya membahas tentang langkah-langkah dalam menentukan invers dari suatu
ratriks antisimetris bentuk khusus ordo n x n. Bagi pembaca yang tertarik dengan
topik ini dapat melanjutkan pembahasan tentang menentukan invers dari suatu

matriks antisimetris bentuk khusus lain serta penerapannya.
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