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ABSTRAK 

Tugas akhir ini membahas tentang invers matriks antisimetris bentuk khusus ordo 𝑛 × 𝑛. Penelitian 

ini bertujuan untuk mendapatkan bentuk umum dari invers matriks antisimetris bentuk khusus ordo 

𝑛 × 𝑛 dengan menggunakan metode adjoin. Dalam menentukan invers suatu matriks antisimetris 

bentuk khusus, terdapat tiga langkah yang dikerjakan. Pertama perhatikan bentuk pola determinan 

dari matriks antisimetris bentuk khusus ordo 2 × 2 sampai 10 × 10 sehingga didapat bentuk 

umumnya. Kedua, perhatikan bentuk dari pola matriks kofaktor matriks antisimetris bentuk khusus 

ordo 2 × 2 sampai 10 × 10 sehingga didapt bentuk umumnya. Ketiga, didapatkan bentuk umum 

invers matriks antisimetris bentuk khusus ordo 𝑛 × 𝑛 yang diperoleh berdasarkan Teorema (4.1) dan 

Teorema (4.2). Pembuktian bentuk umum dari determinan, matriks kofaktor, dan invers matriks 

menggunakan metode induksi matematika dan pembuktian langsung. Hasil yang diperoleh adalah 

didapatkannya bentuk umum dari determinan, matriks kofaktor dan invers dari matriks antisimetris 

berbentuk khusus. 

 

Kata Kunci : determinan, invers matriks, matriks kofaktor, matriks antisimetris, metode adjoin. 
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ABSTRACT 

This final project discusses the inverse of a special form antisymmetric matrix of order n×n. This 

study aims to obtain the general form of the inverse of a special form antisymmetric matrix of order 

n×n using the adjoint method. In determining the inverse of a special form antisymmetric matrix, 

there are three steps that are carried out. First, pay attention to the form of the determinant pattern 
of the special form antisymmetric matrix of order 2×2 to 10×10 so that the general form is obtained. 

Second, pay attention to the form of the cofactor matrix pattern of the special form antisymmetric 

matrix of order 2×2 to 10×10 so that the general form is obtained. Third, the general form of the 

inverse of the special form antisymmetric matrix of order n×n is obtained based on Theorem (4.1) 

and Theorem (4.2). The proof of the general form of the determinant, cofactor matrix, and inverse 

matrix uses the method of mathematical induction and direct proof. The results obtained are the 

general form of the determinant, cofactor matrix and inverse of the special form antisymmetric 

matrix. 
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BAB I  

PENDAHULUAN 
 

1.1 Latar Belakang 

Salah satu cabang ilmu aljabar linear yang menjadi pembahasan penting 

dalam ilmu matematika yaitu matriks. Sederet bilangan berbentuk persegi panjang 

yang diapit oleh sepasang kurung siku dan memenuhi aturan-aturan tertentu yang 

diberikan pada operasi ini disebut matriks [1][2]. Implementasi matriks sudah 

banyak digunakan dalam kehidupan sehari-hari misalnya dalam bidang fisika, 

ekonomi, pertanian, teknik industri, dan lain sebagainya. 

Salah satu pembahasan menarik dalam matriks yaitu menentukan invers 

suatu matriks. Invers matriks dikenal juga sebagai kebalikan dari suatu matriks. Ada 

banyak metode yang digunakan untuk menentukan invers matriks diantaranya 

Metode Faddeev, Metode Adjoin, Metode Dekomposisi Adomian, Metode Salihu, 

dan lain sebagainya. Saat mencoba menemukan invers matriks, ukuran matriks itu 

sendiri merupakan sumber kesulitan yang umum. Menemukan invers menjadi 

semakin menantang seiring bertambahnya ukuran matriks. Oleh karena itu, 

diperlukan formula yang sesuai dalam memperoleh invers dari matriks yang 

berukuran lebih besar. 

Menentukan invers matriks telah banyak diteliti pada penelitian 

sebelumnya. Pada tahun 2014 penelitian [3] dengan bentuk matriks Toeplitz 

sebagai berikut :  





















0

0

0









xx

xx

xx

Tn  ∀ 𝑥 ∈ 𝑅 

Pada penelitiannya didapat bentuk umum dari 𝑇𝑛
−1 adalah sebagai berikut: 

 

 𝑇𝑛
−1 = (𝑡𝑖𝑗) = {

−(𝑛−2)

(𝑛−1)𝑥
untuk 𝑖 = 𝑗

1

(𝑛−1)𝑥
untuk 𝑖 ≠ 𝑗.

 



 

2 
 

Pada tahun 2017 juga terdapat sebuah penelitian [4] yang telah membahas 

mengenai invers matriks positif 𝐴𝑛 dengan matriks bentuk khusus disajikan  

sebagai berikut: 

𝐴𝑛 =

[
 
 
 
 
𝑏 𝑎 𝑎 ⋯ 𝑎
𝑐 𝑏 𝑎 ⋯ 𝑎
𝑐 𝑐 𝑏 ⋯ ⋮
⋮ ⋮ ⋮ ⋱ 𝑎
𝑐 𝑐 𝑐 𝑐 𝑏]

 
 
 
 

∀𝑎, 𝑏, 𝑐 ∈ 𝑅. 

Pada penelitian ini diperoleh hasil sebagai berikut: 

𝐴𝑛
−1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(−1)0|𝐴𝑛−1|

|𝐴𝑛|

(−1)1𝑎. (𝑏 − 𝑐)𝑛−2. (𝑎 − 𝑏)0

|𝐴𝑛|

(−1)2𝑎. (𝑏 − 𝑐)𝑛−3. (𝑎 − 𝑏)1

|𝐴𝑛|
⋯

(−1)𝑛−2𝑎. (𝑏 − 𝑐)1. (𝑎 − 𝑏)𝑛−3

|𝐴𝑛|

(−1)𝑛−1𝑎. (𝑏 − 𝑐)0 .(𝑎 − 𝑏)𝑛−2

|𝐴𝑛|

(−1)1𝑐. (𝑏 − 𝑎)𝑛−2 . (𝑐 − 𝑏)0

|𝐴𝑛|

(−1)0|𝐴𝑛−1|

|𝐴𝑛|

(−1)1𝑎. (𝑏 − 𝑐)𝑛−2. (𝑎 − 𝑏)0

|𝐴𝑛|
⋯

(−1)2𝑎. (𝑏 − 𝑐)2 . (𝑎 − 𝑏)𝑛−4

|𝐴𝑛|

(−1)𝑛−2𝑎. (𝑏 − 𝑐)1 .(𝑎 − 𝑏)𝑛−3

|𝐴𝑛|

(−1)2𝑐. (𝑏 − 𝑎)𝑛−3. (𝑐 − 𝑏)1

|𝐴𝑛|

(−1)1𝑐. (𝑏 − 𝑎)𝑛−2. (𝑐 − 𝑏)0

|𝐴𝑛|

(−1)0|𝐴𝑛−1|

|𝐴𝑛|
⋱ ⋮

(−1)𝑛−3𝑎. (𝑏 − 𝑐)2 .(𝑎 − 𝑏)𝑛−1

|𝐴𝑛|

(−1)3𝑐. (𝑏 − 𝑎)𝑛−4. (𝑐 − 𝑏)0

|𝐴𝑛|

(−1)2𝑐. (𝑏 − 𝑎)𝑛−3. (𝑐 − 𝑏)1

|𝐴𝑛|

(−1)1𝑐. (𝑏 − 𝑎)𝑛−2. (𝑐 − 𝑏)0

|𝐴𝑛|
⋱

(−1)1𝑎. (𝑏 − 𝑐)𝑛−2 .(𝑎 − 𝑏)0

|𝐴𝑛|
⋮

⋮ ⋮ ⋮ ⋱
(−1)0|𝐴𝑛−1|

|𝐴𝑛|

(−1)1 𝑎. (𝑏 − 𝑐)𝑛−2. (𝑎 − 𝑏)0

|𝐴𝑛|

(−1)𝑛−1𝑐. (𝑏 − 𝑎)0 . (𝑐 − 𝑏)0

|𝐴𝑛|

(−1)𝑛−2𝑐. (𝑏 − 𝑎)1 .(𝑐 − 𝑏)𝑛−3

|𝐴𝑛|

(−1)𝑛−3𝑐. (𝑏 − 𝑎)2 . (𝑎 − 𝑐)𝑛−4

|𝐴𝑛|
⋯

(−1)1𝑐. (𝑏 − 𝑎)𝑛−2. (𝑐 − 𝑏)0

|𝐴𝑛|

(−1)0|𝐴𝑛−1|

|𝐴𝑛| ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Selanjutnya  pada tahun 2023 [5] meneliti mengenai invers matriks simetris 

bentuk khusus dimana dalam penelitiannya menggunakan bentuk matriks sebagai 

berikut: 

 𝐴𝑛 =

[
 
 
 
 
 
0 𝑏 𝑏 𝑏 ⋯ 𝑏
𝑏 0 𝑏 𝑏 ⋯ 𝑏
𝑏 𝑏 0 𝑏 ⋯ 𝑏
𝑏 𝑏 𝑏 0 ⋯ 𝑏
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑏 𝑏 𝑏 𝑏 ⋯ 0]

 
 
 
 
 

∀𝑏 ∈ 𝑅, 𝑏 ≠ 0. 

Adapun hasil dari penelitian tersebut adalah: 

 𝐴𝑛
−1[𝑎𝑖𝑗] = {

−(𝑛−2)

(𝑛−1)𝑏
, untuk 𝑖 = 𝑗

1

(𝑛−1)𝑏
, untuk 𝑖 ≠ 𝑗

, 𝑛 ≥ 2. 

Invers matriks juga diteliti [6] tentang invers matriks RSFPLRcircfr dengan 

bentuk matriks sebagai berikut: 

𝐴𝑛 =

[
 
 
 
 
 
 
0 𝑏 𝑏 ⋯ 𝑏 𝑏 𝑏
−𝑏 𝑏 𝑏 ⋯ 𝑏 𝑏 𝑏
−𝑏 0 𝑏 ⋯ 𝑏 𝑏 𝑏
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
−𝑏 0 0 0 𝑏 𝑏 𝑏
−𝑏 0 0 0 0 𝑏 𝑏
−𝑏 0 0 0 0 0 𝑏]

 
 
 
 
 
 

∀0, 𝑏 ∈ 𝑅. 
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Dengan hasil akhir penelitiannya yaitu: 

 ijn aA 1
;  𝑖, 𝑗 = 1,2,… , 𝑛 

 𝐴𝑛
−1 = [

𝑏−1 −𝑏−1 0
0 𝑏−1 −𝑏−1

𝑏−1 −𝑏−1 0

] 

Dengan, 

𝑎𝑖𝑗 = {
𝑏−1,

−𝑏−1,
0,

  

jika 𝑖 = 𝑗 atau (𝑖 = 𝑛, 𝑗 = 1)

jika (𝑗 = 𝑖 + 1, 𝑖 = 1,2, . . , 𝑛 − 1)atau (𝑖 = 𝑛, 𝑗 = 2)
untuk 𝑖, 𝑗 lainnya.

 

Selanjutnya penelitian [7] meneliti mengenai invers matriks Toeplitz-

Hessenberg dengan bentuk khusus berikut: 

𝐻𝑛 =

[
 
 
 
 
 
𝑏 𝑎 0 ⋯ 0 0
𝑏 𝑏 𝑎 ⋯ 0 0
𝑏 𝑏 𝑏 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑏 𝑏 𝑏 ⋯ 𝑏 𝑎
𝑏 𝑏 𝑏 ⋯ 𝑏 𝑏]

 
 
 
 
 

𝑢𝑛𝑡𝑢𝑘 𝑎, 𝑏 ≠ 0 ∈ 𝑅. 

Sehingga didapatkan hasil dari penelitian sebagai berikut: 

𝐻𝑛
−1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
(−1)0

(𝑏 − 𝑎)

(−1)1𝑎

(𝑏 − 𝑎)2
(−1)1𝑎2

(𝑏 − 𝑎)3
⋯

(−1)𝑛−2𝑎𝑛−2

(𝑏 − 𝑎)𝑛−1
(−1)𝑛−1𝑎𝑛−1

𝑏(𝑏 − 𝑎)𝑛−1

(−1)−1

(𝑏 − 𝑎)

(−1)0𝑏

(𝑏 − 𝑎)2
(−1)1𝑎𝑏

(𝑏 − 𝑎)3
⋯

(−1)𝑛−3𝑎𝑛−3𝑏

(𝑏 − 𝑎)𝑛−1
(−1)𝑛−2𝑎𝑛−2

(𝑏 − 𝑎)𝑛−1

0
(−1)1

(𝑏 − 𝑎)

(−1)0𝑏

(𝑏 − 𝑎)2
⋯

(−1)𝑛−4𝑎𝑛−4𝑏

(𝑏 − 𝑎)𝑛−2
(−1)𝑛−3𝑎𝑛−3

(𝑏 − 𝑎)𝑛−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯
(−1)0𝑏

(𝑏 − 𝑎)2
(−1)1

(𝑏 − 𝑎)

0 0 0 ⋯
(−1)1

(𝑏 − 𝑎)

(−1)0

(𝑏 − 𝑎) ]
 
 
 
 
 
 
 
 
 
 
 
 

 

Terdapat banyak jenis-jenis matriks salah satunya yaitu matriks 

antisimetris. Matriks antisimetris mempunyai struktur dan sifat yang khusus. 

Menurut [8] Sebuah matriks dikatakan antisimetris jika pertukaran baris dan kolom 

menghasilkan negatif dari matriks aslinya menjadi 𝐴𝑇 = −𝐴. Bentuk umum dari 

matriks antisimetris adalah sebagai berikut: 

𝐴𝑛 =

[
 
 
 
 
0 𝑎12 𝑎13

−𝑎21 0 𝑎23
−𝑎31 −𝑎32 0

⋯

𝑎1𝑛
𝑎2𝑛
𝑎3𝑛

⋮ ⋱ ⋮
−𝑎1𝑛 −𝑎2𝑛 0 ⋯ 0 ]

 
 
 
 

, dengan 𝑎𝑖𝑗 ∈ 𝑅.  (1.1) 
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Berdasarkan latar belakang yang telah diuraikan di atas, penulis tertarik 

untuk melakukan penelitian tentang matriks antisimetris bentuk khusus ordo 𝑛 × 𝑛 

dengan judul penelitian “Invers Matriks Antisimetris Bentuk Khusus Ordo 𝒏 ×

𝒏” dengan bentuk khusus sebagai berikut: 

𝐴𝑛 =

[
 
 
 
 
 
 
 
 
0 𝑎 𝑎 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎
−𝑎 0 𝑎 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎
−𝑎 −𝑎 0 𝑎 ⋯ 𝑎 𝑎 𝑎 𝑎
−𝑎 −𝑎 −𝑎 0 ⋯ 𝑎 𝑎 𝑎 𝑎
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
−𝑎 −𝑎 −𝑎 −𝑎 ⋯ 0 𝑎 𝑎 𝑎
−𝑎 −𝑎 −𝑎 −𝑎 ⋯ −𝑎 0 𝑎 𝑎
−𝑎 −𝑎 −𝑎 −𝑎 ⋯ −𝑎 −𝑎 0 𝑎
−𝑎 −𝑎 −𝑎 −𝑎 ⋯ −𝑎 −𝑎 −𝑎 0]

 
 
 
 
 
 
 
 

 ∀𝑎 ∈ 𝑅   (1.2) 

1.2 Rumusan Masalah 

Berdasarkan latar belakang yang telah diuraikan di atas, rumusan masalah 

pada tugas akhir ini adalah bagaimana bentuk umum invers matriks antisimetris 

bentuk khusus 𝑛 × 𝑛 pada Persamaan (1.2). 

1.3 Batasan Masalah 

Batasan masalah pada tugas akhir ini yaitu metode yang digunakan pada 

penelitian ini adalah metode adjoin. 

1.4 Tujuan Masalah 

Tujuan dari penelitian ini adalah untuk mendapatkan bentuk umum invers 

matriks antisimetris bentuk khusus 𝑛 × 𝑛 yang sesuai dengan Persamaan (1.2). 

1.5 Manfaat Penelitian 

Berdasarkan rumusan masalah dan tujuan penelitian yang telah 

dikemukakan diatas, maka manfaat yang dapat diambil dari penelitian ini adalah 

sebagai berikut: 

a. Bagi penulis 

Manfaat yang didapatkan melalui penelitian ini adalah memperdalam 

pemahaman penulis tentang matriks, dan mengembangkan wawasan 

disiplin ilmu yang dipelajari unruk mengkaji suatu permasalahan aljabar 

linear khususnya dalam hal menyelesaikan invers matriks antisimetris. 
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b. Bagi lembaga pendidik 

Penulis berharap penelitian ini dapat dijadikan referensi dalam 

memecahkan masalah yang berkaitan dengan menentukan invers 

matriks antisimetris.  

1.6 Sistematika Penelitian 

Sistematika penulisan laporan tugas akhir ini terdiri dari pokok-pokok 

permasalahan yang diuraikan menjadi beberapa bagian yaitu: 

BAB I  PENDAHULUAN 

Pendahuluan menguraikan tentang latar belakang pemilihan judul, 

rumusan masalah, tujuan penelitian, manfaat penelitian, dan 

sistematika penelitian. 

BAB II LANDASAN TEORI 

Bab ini berisi tentang teori dasar mengenai hal-hal yang dapat 

digunakan sebagai acuan dan landasan untuk mengembangkan 

penelitian ini. Konsep dan teori terkait perlu dijelaskan. 

BAB III METODE PENELITIAN 

Bab ini berisi tahapan-tahapan yang dilakukan penulis untuk 

mencapai tujuan penelitian mulai dari metode penelitian, teknik 

pengambilan data sampai ke tahapan penelitian. 

BAB IV PEMBAHASAN 

Pembahasan berisikan penjelasan-penjelasan cara  mencari bentuk 

 umum Invers matriks antisimetris bentuk khusus berordo 𝑛 × 𝑛 

 menggunakan metode adjoin. 

BAB V PENUTUP 

Penutup berisikan kesimpulan dan saran dari semua pembahasan 

 dari hasil penelitian yang telah dilakukan.  
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BAB II 

LANDASAN TEORI 

 

 Pada Bab II ini berisi tentang teori-teori pendukung yang berkaitan dengan 

matriks antisimetris, determinan matriks, matriks kofaktor dan invers matriks. 

2.1 Matriks Antisimetris  

Sebelum membahas apa itu matriks antisimetris, terlebih dahulu akan dijelaskan 

mengenai matriks simetris, karena konsep antisimetris merupakan kebalikan dari 

simetris.  

Definisi 2.1 [1] Suatu matriks bujursangkar 𝐴 dikatakan simetris jika memenuhi: 

 𝐴 = 𝐴𝑇. 

Artinya, matriks tersebut sama dengan transpose-nya sendiri. Transpose (𝐴𝑇) 

adalah matriks yang diperoleh dengan menukar elemen  baris menjadi kolom dan 

sebaliknya.  

Contoh 2.1  Tunjukkan bahwa matriks berordo 4𝑥4  berikut adalah matriks 

simetris! 

𝐴 = [

1 3 5 0
3 −2 2 1
5 2 4 −3
0 1 −3 2

]  

Penyelesaian : 

Akan dibuktikan dengan menggunakan Definisi 2.1 sebagai berikut: 

𝐴𝑇 = [

1 3 5 0
3 −2 2 1
5 2 4 −3
0 1 −3 2

] = 𝐴  

∴ 𝐴 adalah matriks simetris. 
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Definisi 2.2 [9] Matriks antisimetris adalah matriks yang transposenya negatif, 

dengan perkataan lain bila 𝐴𝑇 = −𝐴 atau 𝑎𝑖𝑗 = −𝑎𝑖𝑗  untuk semua 𝑖 dan 𝑗. Mudah 

dipahami bahwa semua elemen diagonal utama matriks antisimetris adalah = 0. 

Bentuk umum dari matriks antisimetris sebagai berikut: 

𝐴𝑛𝑥𝑛 =

[
 
 
 
 
0 𝑎12 𝑎13

−𝑎21 0 𝑎23
−𝑎31 −𝑎32 0

⋯

𝑎1𝑛
𝑎2𝑛
𝑎3𝑛

⋮ ⋱ ⋮
−𝑎1𝑛 −𝑎2𝑛 0 ⋯ 0 ]

 
 
 
 

, dengan 𝑎𝑖𝑗 ∈ 𝑅.  (1.1) 

Contoh 2.2 Tunjukkan bahwa matriks berordo 4𝑥4  berikut adalah matriks 

antisimetris! 

𝐴 = [

0 2 −5 −3
−2 0 3 −4
5 −3 0 1
3 4 −1 0

] 

Penyelesaian :  

Akan dibuktikan dengan menggunakan Definisi 2.2 sebagai berikut : 

𝐴𝑇 = [

0 −2 5 3
2 0 −3 4
−5 3 0 −1
−3 −4 1 0

]  = −[

0 2 −5 −3
−2 0 3 −4
5 −3 0 1
3 4 −1 0

] = −𝐴 

∴  𝐴 adalah matriks antisimetris. 

2.2 Determinan Matriks 

Definisi 2.3 [10] Misalkan 𝐴 adalah matriks × 𝑛 , fungsi determinan dinyatakan 

dengan 𝑑𝑒𝑡 , dan kita definisikan det (𝐴) sebagai jumlah semua hasil kali elementer 

bertanda dari 𝐴 . Determinan dari matriks dinotasikan dengan |𝐴|. 

Contoh 2.3 Tentukan determinan dari matriks 𝐴 = [
2 3
5 1

] 

  |𝐴| = 2.1 − 3.5 = −13  
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Ada beberapa metode yang digunakan untuk menentukan determinan yaitu 

salah satunya dengan menggunakan metode ekspansi kofaktor seperti yang penulis 

akan gunakan untuk menentukan determinan matriks antisimetris yang akan 

dijelaskan pada pada definisi dan teorema berikut ini. 

Definisi 2.4 [11] Jika 𝐴 adalah matriks persegi, maka minor dari entri 

𝑎𝑖𝑗  dinotasikan dengan 𝑀𝑖𝑗 dan didefinisikan sebagai determinan dari submatriks 

yang tersisa setelah baris ke- 𝑖 dan kolom ke- 𝑗 dihilangkan dari 𝐴 . Bilangan 

(−1)𝑖+𝑗𝑀𝑖𝑗 dinotasikan dengan 𝐶𝑖𝑗 dan disebut sebagai kofaktor dari entri 𝑎𝑖𝑗. 

Contoh 2.4 diberikan matriks = [
1 1 −3
2 6 3
3 5 2

] , maka  

Penyelesaian : 

Minor dari 𝑎11 adalah  

𝑀11 = [
6 3
5 2

] = −3  

Dan kofaktor dari 𝑎11 adalah 

𝐶11 = (−1)
1+1𝑀11 = −3  

Teorema 2.1 [1] Determinan dari matriks 𝐴𝑛×𝑛 dapat dihitung dengan mengalikan 

entri-entri pada sebarang baris (atau kolom) dengan kofaktor-kofaktornya dan 

menjumlahkan hasil kali yang diperoleh dimana untuk setiap 1 ≤ 𝑖 ≤ 𝑛 dan 1 ≤

𝑗 ≤ 𝑛, 

det(𝐴) = 𝑎1𝑗𝐶1𝑗 + 𝑎2𝑗𝐶2𝑗 + 𝑎3𝑗𝐶3𝑗 +⋯+ 𝑎𝑛𝑗𝐶𝑛𝑗  

(ekspansi kofaktor sepanjang kolom ke-𝑗) 
 

det(𝐴) = 𝑎𝑖1𝐶𝑖1 + 𝑎𝑖2𝐶𝑖2 + 𝑎𝑖3𝐶𝑖3 +⋯+ 𝑎𝑖𝑛𝐶𝑖𝑛  

(ekspansi kofaktor sepanjang kolom ke-𝑖). 
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Contoh 2.5 hitung determinan dari matriks 𝐴3 = [
3 2 1
1 5 −2
1 −2 6

] dengan 

menggunakan ekspansi kofaktor sepanjang baris pertama dari 𝐴3 

Penyelesaian :  

det (𝐴3) = [
3 2 1
1 5 −2
1 −2 6

] = 3 [
5 −2
−2 6

] − 2 [
1 −2
1 6

] + 1 [
1 5
1 −2

]  

= 3.26 − 2.8 + 1 − 7 = 56 

2.3 Invers Matriks 

Definisi 2.5 [1] Jika 𝐴 adalah matriks bujur sangkar, yaitu matriks yangv memiliki 

jumlah baris dan kolom yang sama, misalkan berukuran 𝑛 × 𝑛. Kemudian, jika 

terdapat sebuah matriks lain 𝐵 yang juga berukuran sama dengan  𝐴, dan memenuhi 

syarat bahwa hasil perkalian antara matriks 𝐴 dan 𝐵, baik dalam urutan 𝐴𝐵 maupun 

𝐵𝐴, menghasilkan matriks identitas 𝐼 sehingga 𝐴𝐵 = 𝐵𝐴 = 𝐼 maka 𝐴 disebut bisa 

dibalik dan 𝐵 disebut invers dari 𝐴. 

𝐴−1 =
1

det(𝐴)
𝑎𝑑𝑗(𝐴). 

Definisi 2.6 [1] Jika 𝐴  adalah matriks berukuran 𝑛 × 𝑛 dan 𝐶𝑖𝑗 adalah kofaktor dari 

𝑎𝑖𝑗 maka matriks [

𝐶11 𝐶12
𝐶21 𝐶22

⋯ 𝐶1𝑛
⋯ 𝐶2𝑛

⋮ ⋮
𝐶𝑛1 𝐶𝑛2

⋱ ⋮
⋯ 𝐶𝑛𝑛

] disebut matriks kofaktor dari 𝐴. Transpose 

dari matriks ini disebut dengan 𝑎𝑑𝑗𝑜𝑖𝑛 𝐴 dan di notasikan 𝑎𝑑𝑗(𝐴). Syarat agar 

matriks 𝐴 mempunyai invers adalah matriks 𝐴 matriks non singular (|𝐴| ≠ 0). Jika 

matriks 𝐴 matriks singular (|𝐴| = 0) maka matriks 𝐴 tidak mempunyai invers. 

Teorema 2.2 [12] Jika 𝐴 adalah matriks yang dapat dibalik, maka 𝐴−1 =

1

|𝐴|
𝑎𝑑𝑗(𝐴). 
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Contoh 2.6 Diberikan matriks 𝐴 = [
5 2
0 0

] buktikan bahwa 𝐴 tidak memiliki 

invers! 

Penyelesaian : 

Langkah pertama mencari determinan matriks 𝐴: 

det(𝐴) = |
5 2
0 0

| = (5.0) − (2.0) = 0  

Langkah kedua misalkan  𝐶 = [
𝑎 𝑏
𝑐 𝑑

] adalah invers dari 𝐴, maka ; 

𝐴𝐶 = [
1 0
0 1

]  

[
5 2
0 0

] [
𝑎 𝑏
𝑐 𝑑

] = [
1 0
0 1

]   

[2𝑎 + 𝑐 2𝑏 + 𝑑
0 0

] = [
1 0
0 1

]  

Terlihat baris ke-2 kolom ke-2 dari  𝐴𝐶 tidak sama dengan 1. Sehingga matriks 𝐴 

tidak memiliki invers. Maka terbukti Teorema 2.2 

Contoh 2.7 Diberikan matriks 𝐴 = [
3 2 1
2 5 2
6 5 4

], tentukan 𝐴−1! 

Penyelesaian :  

1. Menghitung nilai determinan 𝐴  

|𝐴| = |
3 2 1
2 5 2
6 5 4

|  

18

20830

)20(1)4(2)10(3

56

52
1

46

22
2

45

25
3








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2. Menentukan matriks kofaktor 

𝐶11 = |𝑀11| = |
5 2
5 4

| = 10     𝐶21 = −|𝑀21| = − |
2 1
5 4

| = −3  

𝐶12 = −|𝑀12| = − |
2 2
6 4

| = 4     𝐶22 = |𝑀22| = |
3 1
6 4

| = 6 

𝐶13 = |𝑀13| = |
2 5
6 5

| = −20    𝐶23 = −|𝑀23| = − |
3 2
6 5

| = −3 

𝐶31 = |𝑀31| = |
2 1
5 2

| = −1  

𝐶32 = −|𝑀32| = − |
3 1
2 2

| = −4  

𝐶33 = |𝑀33| = |
3 2
2 5

| = 11  

Sehingga diperoleh matriks kofaktornya sebagai berikut: 

























11320

464

1310

C  

3. Menentukan adjoin 𝐴 

Dari matriks kofaktor yang diperoleh, adjoin dari matriks 𝐴 yaitu: 

























11320

464

1310

)(AAdj  

4. Menentukan Invers matriks 𝐴 

 𝐴−1 =
1

18
[
10 −3 −1
4 6 −4
−20 −3 11

] =

[
 
 
 
 
5

9
−
1

6
−

1

18
2

9

1

3
−
2

9

−
10

9
−
1

6

11

18 ]
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2.4 Induksi Matematika 

Definisi 2.7 [16] Misalkan bahwa 𝑝(𝑛) adalah proposisi perihal bilangan bulat 

positif dan ingin membuktikan bahwa 𝑝(𝑛) benar untuk semua bilangan bulat 

positif 𝑛. Untuk membuktikan proposisi ini, maka perlu dibuktikan bahwa: 

1. 𝑝(1) benar, dan 

2. Jika 𝑝(𝑛) benar, maka 𝑝(𝑛 + 1) juga benar untuk setiap 𝑛 ≥ 1. Sehingga 

𝑝(𝑛) benar untuk semua bilangan bulat positif 𝑛. 

Langkah 1 dinamakan basis induksi, sedangkan langkah 2 dinamakan langkah 

induksi. Langkah induksi berisi asumsi (andaian) yang menyatakan bahwa 𝑝(𝑛) 

benar. Asumsi tersebut dinamakan hipotesis induksi. Bila sudah menunjukkan 

kedua langkah tersebut benar, maka sudah terbukti bahwa 𝑝(𝑛) benar untuk semua 

bilangan positif 𝑛. 

Contoh 2.8 Buktikan bahwa untuk setiap bilangan bulat positif 𝑛, berlaku: 

1 + 2 + 3 + ⋯+ 𝑛 =
𝑛(𝑛 + 1)

2
 

Bukti: 

Misalkan 𝑝(𝑛) adalah  1 + 2 + 3 + ⋯+ 𝑛 =
𝑛(𝑛+1)

2
  

1. Basis induksi: akan dibuktikan untuk 𝑛 = 1 maka 𝑝(1) benar. 

𝑝(1) adalah; 1 =
1(1+1)

2
=

2

2
= 1 

Jadi, 𝑝(1) benar. 

2. Langkah induksi: diasumsikan bahwa 𝑝(𝑘) benar untuk suatu bilangan asli 

𝑘 , yaitu: 1 + 2 + 3 + ⋯+ 𝑘 =
𝑘(𝑘+1)

2
. Dan akan ditunjukkan bahwa 𝑝(𝑛 +

1) juga benar, yaitu: 1 + 2 + 3 + ⋯+ 𝑘 + (𝑘 + 1) 

Hal ini ditunjukkan sebagai berikut: 

1 + 2 + 3 + ⋯+ 𝑘 + (𝑘 + 1) = (
𝑘(𝑘 + 1)

2
+ (𝑘 + 1)) 
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     =
𝑘(𝑘+1)+2(𝑘+1)

2
 

     =
(𝑘+1)(𝑘+2)

2
 

     =
(𝑘+1)((𝑘+1)+1)

2
 

Jadi 𝑝(𝑘 + 1) benar. 

Dari langkah (1) dan langkah (2) dapat disimpulkan bahwa 𝑝(𝑛) benar 

untuk setiap bilangan bulat positif 𝑛 1 + 2 + 3 + ⋯+ 𝑛 =
𝑛(𝑛+1)

2
. 

Contoh 2.9 Buktikan bahwa untuk setiap bilangan bulat 𝑛 ≥ 1, berlaku: 

𝐴𝑛 = [
1 𝑛
0 1

] , dengan 𝐴 = [
1 1
0 1

] 

1. Basis induksi: akan dibuktikan untuk 𝑛 = 1 maka 𝑝(1) benar. 

𝐴1 = 𝐴 = [
1 1
0 1

] 

Sesuai dengan: 

[
1 1
0 1

] = [
1 1
0 1

] 

Benar untuk 𝑛 = 1. 

Jadi, 𝑝(1) benar. 

2. Langkah induksi: misalkan untuk suatu 𝑛 = 𝑘, berlaku: 

𝐴𝑘 = [
1 𝑘
0 1

] 

Buktikan untuk 𝑛 = 𝑘 + 1: 

    𝐴𝑘+1 = 𝐴𝑘 ∙ 𝐴 = [
1 𝑘
0 1

] ∙ [
1 1
0 1

] 

     = [
1 𝑘 + 1
0 1

] 

     = 𝐴𝑘+1 

Terbukti. 
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BAB III 

METODE PENELITIAN 

 

Metode penelitian yang digunakan dalam penyelesaian tugas akhir ini 

adalah studi literatur dengan sumber pendukung referensi jurnal, buku referensi, 

website blog, artikel, internet dan lain sebagainya. Berikut diberikan langkah-

langkah untuk mendapatkan invers yaitu: 

1. Diberikan matriks antisimetris bentuk khusus yang dibentuk dari 

Persamaan (1.2). 

2. Menentukan nilai determinan matriks antisimetris berordo 2×2 sampai 

10×10 menggunakan ekspansi kofaktor. 

3. Menduga bentuk umum determinan matriks antisimetris berordo  𝑛 × 𝑛. 

4. Membuktikan bentuk umum determinan dari matriks antisimetris 

menggunakan induksi matematika. 

5. Menentukan kofaktor dari matriks antisimetris berordo 2×2 sampai 

10×10. 

6. Menduga bentuk umum kofaktor matriks antisimetris berordo 𝑛 × 𝑛. 

7. Membuktikan bentuk umum matriks kofaktor dari matriks antisimetris 

ordo 𝑛 × 𝑛 menggunakan metode minor-kofaktor. 

8. Menentukan bentuk umum adjoin dari matriks antisimetris bentuk 

khusus berordo 2×2 sampai 10×10. 

9. Menentukan invers dari matriks antisimetris berordo 2×2 hingga 10×10 

menggunakan metode adjoin. 

10. Menduga bentuk umum invers matriks antisimetris berordo  𝑛 × 𝑛. 

11. Membuktikan bentuk umum invers matriks antisimetris berordo n×n 

dengan pembuktian 𝐴𝑛𝐴𝑛
−1 = 𝐴𝑛

−1𝐴𝑛 = 𝐼. 

12. Mengaplikasikan bentuk invers secara umum dari matriks antisimetris 

pada contoh soal. 

  



 

 
 

BAB V 

PENUTUP 
 

5.1 Kesimpulan 

Berdasarkan uraian pembahasan dan penjelasan pada bab-bab sebelumnya 

dapat diperoleh kesimpulan sebagai berikut: 

1. Bentuk umum determinan matriks antisimetris bentuk khusus ordo 𝑛 × 𝑛 

pada persamaan (1.2)  adalah sebagai berikut: 

|𝐴𝑛| = det(𝐴𝑛) = 0 untuk 𝑛 ganjil  

|𝐴𝑛| = det(𝐴𝑛) = 𝑎𝑛  untuk 𝑛 genap 

2. Bentuk umum matriks kofaktor dari matriks antisimetris bentuk khusus ordo 

𝑛 × 𝑛 pada persamaan (1.2)  𝑛 × 𝑛 adalah sebagai berikut: 

𝐶𝑛 =

[
 
 
 
 
 
 
 
 
 
(−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 ⋯ (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1

(−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 ⋯ (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1

(−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 ⋯ (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1

(−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 ⋯ (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
(−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 ⋯ (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1

(−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 ⋯ (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1

(−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 ⋯ (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1

(−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 ⋯ (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1]
 
 
 
 
 
 
 
 
 

untuk n ganjil  

 

𝐶𝑛 =

[
 
 
 
 
 
 
 
 
 

0 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 ⋯ (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1

(−1)𝑛−1𝑎𝑛−1 0 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 ⋯ (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1

(−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 0 (−1)𝑛𝑎𝑛−1 ⋯ (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1

(−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 0 ⋯ (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
(−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 ⋯ 0 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1

(−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 ⋯ (−1)𝑛−1𝑎𝑛−1 0 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1

(−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 ⋯ (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 0 (−1)𝑛𝑎𝑛−1

(−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 ⋯ (−1)𝑛−1𝑎𝑛−1 (−1)𝑛𝑎𝑛−1 (−1)𝑛−1𝑎𝑛−1 0 ]
 
 
 
 
 
 
 
 
 

untuk n genap  

3. Bentuk umum invers matriks antisimetris bentuk khusus ordo 𝑛 × 𝑛 pada 

persamaan (1.2) adalah sebagai berikut: 

𝐴𝑛
−1 = tidak ada invers ,  untuk 𝑛 ganjil 
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(𝐴𝑛)
−1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 0

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎
⋯

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎
0

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎
⋯

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎
0

(−1)𝑛−1

𝑎
⋯

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎
0 ⋯

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎
⋯ 0

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎
⋯

(−1)𝑛

𝑎
0

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎
⋯

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎
0

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎
⋯

(−1)𝑛

𝑎

(−1)𝑛−1

𝑎

(−1)𝑛

𝑎
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 untuk n genap 

5.2 Saran 

Dalam pembahasan yang telah di jabarkan, penulis dalam penelitian ini 

hanya membahas tentang langkah-langkah dalam menentukan invers dari suatu 

matriks antisimetris bentuk khusus ordo 𝑛 × 𝑛. Bagi pembaca yang tertarik dengan 

topik ini dapat melanjutkan pembahasan tentang menentukan invers dari suatu 

matriks antisimetris bentuk khusus lain serta penerapannya. 
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