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ABSTRAK

Dalam kehidupan sehari-hari, banyak permasalahan yang dapat dimodelkan ke dalam bentuk
matematika, salah satunya melalui sistem persamaan linear yang dapat diselesaikan dengan bantuan
matriks. Matriks centrosymmetric merupakan salah satu jenis matriks yang memiliki sifat simetris
terhadap pusatnya dan memiliki banyak aplikasi, khususnya dalam pemrosesan sinyal digital dan
teori kontrol. Penelitian sebelumnya telah membahas determinan dari matriks centrosymmetric
berpangkat bilangan bulat positif, namun belum banyak yang mengkaji bentuk determinan dari
matriks tersebut ketika berpangkat bilangan bulat negatif. Penelitian ini bertujuan untuk menentukan

tuk umum determinan matriks centrosymmetric bentuk khusus ordo ganjil berpangkat bilangan
Bilat negatif. Metode yang digunakan adalah ekspansi kofaktor dengan memperhatikan sifat-sifat
Ihusus dari matriks yang diteliti. Hasil dari penelitian ini ialah bentuk umum determinan matriks

@ghtrosymmetric Ay, " dengan m ganjil adalah a™"™.

o
Kata Kunci : Determinan, ekspansi kofaktor, matriks centrosymmetric, matriks ordo ganjil,
pangkat bilangan bulat negatif.
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ABSTRACT

In daily life, many problems can be modeled mathematically, particularly using systems of linear
equations that can be solved with matrices. A centrosymmetric matrix is a type of matrix that exhibits
symmetry with respect to its center and is widely used in various fields such as digital signal
processing and control theory. Previous studies have focused on the determinants of
centrosymmetric matrices raised to positive integer exponents; however, little research has been

ducted on their determinants when raised to negative integer exponents. This study aims to
agtermine the general form of the determinant of a special-form centrosymmetric matrix of odd
(%der raised to a negative integer exponent. The method used is cofactor expansion, considering the
specific properties of the matrix under study. The result of this research is the general form of the

rminant of the centrosymmetric matrix A, with m odd, which is a=™",

Keywords : Cofactor expansion, centrosymmetric matrix, determinant, negative integer exponent,

@—order matrix.
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BAB1
PENDAHULUAN

Latar Belakang

i1z eydio yeq @

Dalam kehidupan sehari-hari, kita sering menghadapi masalah yang ternyata
falah masalah matematika. Persoalan akan lebih mudah diselesaikan jika
Igengubahnya menjadi bahasa atau persamaan matematika. Namun, jika suatu
é)rsoalan seringkali terdiri dari lebih dari dua persamaan atau variabel, kita juga
%Tring mengalami kesulitan. Bahkan di negara-negara maju, model ekonomi sering
memerlukan sistem persamaan yang memiliki puluhan atau bahkan ratusan
é.riabel. Pada dasarnya, matriks membantu kita membuat analisis yang mencakup
hubungan variabel-variabel dari persoalan tersebut [1]. Suatu matriks terdiri dari
jajaran bilangan-bilangan yang panjangnya empat persegi. Bilangan-bilangan yang
termasuk dalam jajaran tersebut merupakan entri matriks. Jumlah baris dan kolom
suatu matriks menunjukkan ukurannya [2].

Terdapat bentuk matriks yang memiliki keistimewaan dalam teori matriks,
diantaranya matriks nol yang seluruh entrinya bernilai nol, matriks diagonal yang
memiliki entri yang bukan nol pada diagonal utamanya, matriks segitiga atas/bawah
yang memiliki entri bernilai nol pada diagonal bawah/atasnya, matriks
c%)ntrosymmetric, dan lain sebagainya. Salah satu jenis matriks yang menarik untuk
T&aji ialah matriks centrosymmetric, yang memiliki sifat simetris terhadap pusat
I%éttriksnya. Penelitian oleh [3] menjelaskan bahwa matriks centrosymmetric
rgemiliki aplikasi penting dalam berbagai bidang, seperti pemrosesan sinyal digital,
tg)ri kontrol, dan sistem linear. Keunikan sifat matriks ini membuka peluang untuk
penelitian lebih lanjut, terutama dalam aspek determinannya.

Determinan mempunyai peranan penting dalam menyelesaikan beberapa

}ISI13

pérmasalahan pada matriks dan banyak digunakan dalam matematika dan ilmu
tgu'i)‘apan. Penelitian terdahulu telah banyak membahas tentang determinan matriks,
%perti yang dilakukan pada tahun 2015 oleh [4] yang telah melakukan penelitian
éntang bentuk umum determinan matriks toeplitz tridiagonal yang memperoleh

h%)sil sebagai berikut:
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n—-1 ..
p=—n ganjil

©
|Tn§= Yo ((n ; k) (b) (=20 (—ac)k>, dimana {

o
Kemudian penelitian tentang determinan lainnya pada tahun 2017 oleh [5] yang

p =-,ngenap.

‘[elegl;r membahas tentang determinan dan invers matriks blok 2 X 2. Hasil penelitian
mel?_unjukkan bahwa dengan memblok matriks taksingular menjadi matriks yang
lebity kecil, salah satu submatriks P memiliki determinan yang # 0.

EPenelitian khusus tentang matriks centrosymmetric juga banyak dibahas,
sepgti pada tahun 2020 oleh [6] telah meneliti determinan ordo 3 X 3 berpangkat
bilq%gan bulat positif memperoleh hasil sebagai berikut: |A;™| = a3". Pada tahun
202\?];_, penelitian oleh [7] dilakukan tentang determinan matriks 4 X 4 berpangkat
bil%gan bulat positif memperoleh hasil sebagai berikut:

4,71 = {

—a*",  nganjil

a*n, n genap

c

Penelitian selanjutnya yang dilakukan pada tahun 2024 oleh [8] yang
membahas mengenai determinan matriks centrosymmetric berpangkat bilangan
bulat positif ordo ganjil. Hasil yang diperoleh dari penelitian tersebut ialah bentuk
umum determinan dari matriks centrosymmetric A,," ialah A™. Namun, beberapa
penelitian tersebut belum mencakup kajian spesifik tentang determinan matriks
centrosymmetric, khususnya yang berpangkat bilangan bulat negatif.

c’)Salah satu penelitian yang membahas tentang matriks berpangkat bilangan
bulét: negatif sebelumnya sudah pernah dilakukan pada tahun 2017 oleh [9] tentang
traq% matriks real berpangkat bilangan bulat negatif. Penelitian tersebut
mengungkapkan bahwa salah satu syarat dalam pembentukan persamaan umum
dargmatriks berpangkat bilangan bulat negatif ialah matriks tersebut memiliki
invgs. Namun, penelitian tersebut hanya terbatas pada matriks yang berukuran
2 x? dengan entri-entrinya merupakan bilangan real.

E,Berlandaskan beberapa penelitian terdahulu yang dijelaskan sebelumnya,
peﬁilis tertarik melanjutkan penelitian oleh [8] dengan judul penelitian
“Dtgg‘:rminan Matriks Centrosymmetric Bentuk Khusus Ordo Ganjil Berpangkat
Bil%gan Bulat Negatif” dan bentuk khususnya yaitu:

wisey JireAg u
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©

— [@2 a a a a 0 0 0 O
o |0 a a a a 0 0 0 O
A~ 10 0 a a a 0 0 0 O
2 :

© [o 0 0 a a 0 0 0 O
A®=10 0 O 0 a O 0 0 0]}, dengan aeR dan m ganjil (1.1)
3 |0 0 O 0 a a 0 0 O
=10 00 - 0aa - a 00
c |10 0 O 0O a a -+ a a 0
-~ 00 - 0aa - aa a
w

g Penelitian penulis berbeda dari penelitian [8] karena penelitian penulis
meﬁ\_ggunakan matriks centrosymmetric berpangkat bilangan bulat negatif,
seddfigkan penelitian [8] menggunakan matriks centrosymmetric berpangkat

bilaiﬁgan bulat positif.

1.2 Rumusan Masalah
Berlandaskan latar belakang di atas, masalah yang diangkat dalam penelitian
ini ialah “Bagaimana bentuk umum determinan matriks centrosymmetric bentuk

khusus ordo ganjil berpangkat bilangan bulat negatif”.

1.3 Batasan Masalah
Batasan masalah diberikan agar tidak terjadi pembahasan secara luas.
1. Matriks yang dikaji ialah matriks centrosymmetric bentuk khusus seperti yang
ﬁtunjukkan pada Persamaan (1.1)
2. %eterminan bentuk umum matriks centrosymmetric ordo ganjil diperoleh
g“-enggunakan metode ekspansi kofaktor.

e
(o]

1.4cTujuan Penelitian
=
= Berlandaskan rumusan masalah, batasan masalah ini  bertujuan untuk
o

mefjgetahui bentuk umum determinan matriks centrosymmetric bentuk khusus

berpangkat bilangan bulat negatif ordo ganjil.

wisey JireAg uej[ng jo
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1.SI Manfaat Penelitian

Q,3-Beberapa manfaat yang dapat diambil dari penelitian ini adalah sebagai

betikut:
o

1. MMemperdalam pemahaman penulis tentang matriks, terutama dalam konteks

<determinan matriks berpangkat bilangan bulat negatif.

2. genelitian ini juga akan berguna bagi pembaca untuk menjadi referensi dalam

@enelitian selanjutnya tentang determinan matriks bentuk khusus, terutama

satriks centrosymmetric berpangkat bilangan bulat negatif.

0p)

=
1.6» Sistematika Penelitian

=
% Pokok-pokok masalah dalam laporan Tugas Akhir ini diuraikan menjadi:

Bzasl
(o)

c

BAB II

PENDAHULUAN

Dalam pendahuluan, dibahas latar belakang pemilihan judul, rumusan
masalah, tujuan penelitian, manfaat, dan sistematika penelitian.
LANDASAN TEORI

Teori dasar tentang matriks, matriks centrosymmetric, determinan,
ekspansi kofaktor, invers, dan induksi matematika dibahas dalam bab ini.
Teori-teori ini dapat digunakan sebagai landasan untuk mengembangkan

penelitian ini.

BAB III METODE PENELITIAN

B

wisey JireAg uejng ;g&usmz\gun 3}@191 Jjelg

Untuk menentukan bentuk determinan umum dari matriks
centrosymmetric bentuk khusus berpangkat bilangan bulat negatif ordo

ganjil, penulis telah melakukan beberapa langkah dalam bab ini.

IV PEMBAHASAN

Bab ini berisi tentang penjabaran tahapan-tahapan yang telah dijelaskan
pada bab sebelumnya, yaitu langkah-langkah yang dilakukukan unruk
mendapatkan bentuk ummum matriks centosymmetric bentuk khusus
berpangkat bilangan bulat negatif ordo ganjil.

PENUTUP

Bab ini berisi kesimpulan dan saran dari hasil penelitian yang dilakukan

oleh penulis.
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AE

o

: BAB 11

Sl LANDASAN TEORI
©

gl Matriks dan Operasinya

Déefinisi 2.1 [1] Matriks merupakan kumpulan bilangan, simbol, atau ekspresi,
Berbentuk persegi atau persegi panjang yang disusun dalam baris dan kolom.

ol atau notas1 dalam matriks menggunakan huruf kapital. Dalam matriks, baris
Stmbol i dal iks menggunakan hurufkapital. Dal iks, bari

0))
adalah susunan angka yang mendatar, sedangkan kolom adalah susunan angka yang

%)
t@ak.

Secara umum matriks dituliskan :

g a11 alj - aln
mn = [Qij “la.  a: .. :
mXn all ij am
Am1 Amj = Qmp
m = baris
n = kolom
i=12,...m
j=12,...,n

Definisi 2.2 [2] Jika A merupakan matriks m X r dan B merupakan matriks r X n
Igraka hasilkali AB adalah matriks m X n, dengan entri-entrinya ditentukan sebagai
l;i:rikut. Untuk menemukan entri pada baris i dan kolom j dalam AB, pisah baris i
(Eri matriks A dan kolom j dari matriks B untuk menemukan entri pada baris i dan
lg)lom j dalam AB, kalikan entri yang bersesuaian dari baris dan kolom tersebut,

Jén kemudian jumlahkan hasilnya..

=)

Contoh 2.1

)

5 1 -2 4 TA17 5
Brberikan matriks A —[ ]dan matriks = | 4 —2].
< -4/ A 15 AN

Q
]gi‘tunglah hasil kali dari matriks A dan B.

eIy WIsSeY JIIeAg uejn
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Perielesaian:

QO
-~

Dil@tahui: A = [
1)

~—~

)
Dit%nya: A X B?

Ax;gé:[—13 _32 g][i _52]:[_110 —1136

1

-2 4 _
3 3 5]danB—

-1 1
=z
) ) ) ) ) . —-10 13
Jadg)hasﬂ kali dari matriks matriks A dan B ialah [ 1 _16
»

Deﬁ;isi 2.3 [10] Misalkan A berupa matriks persegi, perpangkatan dari A dapat
didefinisikan sebagai berikut:
©
1.cA® =1

2. A"=AXAXAX--XA,(n>0)

n faktor

(2.2)

2.2 Matriks Centrosymmetric

Terdapat banyak bentuk matriks khusus, diantaranya matriks nol, diagonal,
identitas, segitiga atas atau bawah, centrosymmetric, dan sebagainya[3].
Pada penelitian ini akan membahas matriks centrosymmetric, seperti yang
digambarkan dalam definisi berikut:
Deigl’glisi 2.4 [11] Matriks centrosymmetric ialah matriks yang simetri pada
pergz:ngahan matriksnya. Suatu matriks dikatakan matriks centrosymmetric jika

™

Qjj = Ameit1,m—j+1 dengan 1<i<m,1<j<m, sehingga bentuk umum

magiks centrosymmetric dapat ditulis sebagai berikut:

~ A1 Q12 0 Qim
c |@21 Q22 - dzm
: : : : (2.3)
Ag=
S |2em v G2 an
- Aym 0 Q12 4gy
ot
L o

Definisi 2.5 [12] Misalkan S merupakan matriks m X m, matriks S disebut matriks

0

cen’gg’osymmetric jika memenuhi S® = S dan S® didefinisikan dengan SR =
]m%]m dimana S® merupakan rotasi matriks S dan J,,, merupakan matriks contra-

+%)
ideftitas yang dapat ditulis sebagai berikut:

wisey JireAg
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U.\/I Hak Cipta Dilindungi Undang-Undang

u.:" = 1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:

Amr .“f a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masa
/en_ b. Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau.

S 2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau.
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unsusamay 2+ Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau.
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Teorema 2.1 [2] Misalkan A berupa matriks persegi, maka berlaku:

a. Q;:—Jikat terdapat satu baris atau satu kolom yang bernilai nol pada

©4, maka det(A) = 0. (2:3)
g
b.gdet (A) = det(A").
Cm?_toh 2.3
= 2 1 3
Misgalkan A = |6 2 1| merupakan matriks persegi 3 X 3 dengan satu barisnya
= 0 0 O
bernmlai 0 maka buktikan bahwa Teorema 2.1 bagian a berlaku.
c
Penyelesaian:
-~
D 2 1 3
Dikgtahui: A = |6 2 1|, ditanya: det(4) = 0?
Q 0 0 O
= 2.1..31.2 1
det(A) = |6 .2_ 1] 6. 2
0 0 olo 0

det(A) = (2x2x0)+(1x1x0)+(Bx6x0))—((1x6x0)+(2x
1x0)+(B%2%x0)=(0+0+0)—(0+0+0)=0

Dapat dilihat bahwa determinan dari A adalah 0, sehingga terbukti bahwa Teorema

2.1 bagian a berlaku.

Contoh 2.4
(@)

@ 2 1 3 2 6 0
Migdlkan A =
o

6 2 1‘ dan AT = |1 2 5] adalah matriks persegi 3 X 3,
o) 05 4 3 1 4

bu]%i‘kan bahwa Teorema 2.1 bagian b berlaku.
PeIE'.elesaian:

2 1 3

6 2 1

(@)
0 5 4
2 6 0‘

=
Dikgtahui: 1. 4 =

22AT=11 2 5

3 1 4
-~

Ditanya: det (A) = det(AT)?
c

0 A}1SI3A
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© 2 3.2 1
detlA) = [6 211 6. 2
x 0 5 410 5
(@)
detfAd) = (2x2x4)+(1x1x0)+(Bx6x5))—((1x6x4)+(2x

o 1X5)+(3x%x2x%x0))=(16+0+90) — (24 +10+0) = 72
i 2. 6._.0] 2 ,6

detfA") = |1 Z\,S
= 31 % 3 1

detfA™) = (2x2x4)+(6x5x3)+(0x1x1))—((6x1x4)+(2x
& 5X1)+(0%x2%x3))=(16+90+0)— (24 + 10+ 0) = 72
Dag’at dilihat bahwa det (A) = det(AT), sehingga terbukti bahwa Teorema 2.1
bag%n a berlaku.
o Suatu matriks dianggap singular jika memiliki determinan nol dan jika tidak,,

c
matriks tersebut dianggap non-singular. [4].

2.4 Ekspansi Kofaktor

Definisi 2.7 [2] Jika kita asumsikan bahwa A merupakan matriks persegi, maka M;;
merupakan representasi minor dari a;;, dan M;jmerupakan determinan dari

submatriks yang tersisa setelah menghapus baris ke-i dan kolom ke-j. Kofaktor dari

yang diwakili oleh (—1)"*/M;;.

1 2 3
1 1 4

2 4 1

a;j merupakan C;;,

Coﬂoh 2.5 Misalkan 4 =

FE
Miqgr dari a4 ialah:

My U 1 4] ~15
4 1

Koiﬁktor dari a,, ialah:
=

IuIE

wn
C11Z’é (_1)1+1M11 = (=1)?*(~15) = —15

10
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©
Begitu juga dengan minor dari a,;
)

23 2 3
i [ -
o

Dengan kofaktor dari a,4 ialah

Co7= (—=1)%*'M,, = (—1)3(—10) = 10
=

Belvilsarkan contoh di atas, dapat diketahui bahwa minor dan kofaktor pada aij
hanfgna berbeda pada tandanya, dimana C;; = +M;;. Untuk mengetahui tanda yang

w
akamdigunakan + atau - dapat dilihat sebagai berikut [2].

QO
2 + =+ = e
2 -+ - + -
+ - + - +
2.6
N gl (2.6)
+ - 4+ - +

Sebagai ContOh, C11 = M119 C12 = M129 C13 = M13, 614, = M14 dan begltu

seterusnya.

Teorema 2.2 [13] Mengingat bahwa matriks A merupakan persegi, determinan A
dapat dihitung dengan mengalikan entri-entri pada baris ke-i atau kolom ke-j
dené.’an kofaktornya. Kemudian, dengan asumsibahwa 1 <i<ndan1l < j < n,

hastf kali yang diperoleh harus dijumlahkan.

7]
a. gEkspansi kofaktor baris ke-i.
E'det(A) = al-lCl-l + aizCiz + -+ ainCin (27)

b. EEkspansi kofaktor kolom ke-j.
Edet(A) = ajlcjl + ajzcjz + -4 aanjn

n

Cantoh 2.6
o 12 3

Dibgrikan matriks A= |1 1 4|, hitunglah determinannya menggunakan
= 2 4 1

eksgansi kofaktor sepanjang baris pertama dari A.

11
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Perielesaian:
1 2 3
-~
Az |1 1 4]
2 4 1

|A|E»,—’1LlL ‘1*—2[% ]+3[2 4]_1( 15)—2(=7) +3(2) = 5

J adlgldeterminan dari matriks A ialah 5.

=
2.5c Invers Matriks

Definisi 2.8 [ 12] Matriks bujur sangkar A disebut sebagai matriks yang bisa dibalik,
dan-matriks B disebut sebagai matriks invers A jika matriks dengan ukuran sama

w
didapatkan sedemikian rupa sehingga AB = BA = I.

)
A
£ 1 1 2.8
> At = —adj(4) = (G .
c 4] 14
Contoh 2.7
1 2 3
Diberikan matriks A= |1 1 4|, tentukan invers matriks A dengan
2 4 1

menggunakan metode adjoin

Penyelesaian:

Menghitung determinan matriks A
1 2 3

1 1 4

2 4 1

izl -2l 2l |

|A|’§: 1(-15) = 2(=7) +3(2) =5
Meﬁéhitung minor kofaktor dari matriks A:

|A| 7
L ol
2

Cud= (02|, )=
f'D

Ciahe (—1)3|2 =7
S

CP= (- 1)4 |_10
CD

Cu= 0?2 3| =10

12
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a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masa
b. Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau.
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BAB III
METODE PENELITIAN

Bab ini akan memberikan penjelasan tentang prosedur yang digunakan untuk

ménghasilkan bentuk determinan umum untuk matriks centrosymmetric bentuk

lhusus ordo ganjil berpangkat bilangan bulat negatif. Prosesnya dapat dilihat

s%oagai berikut:

I(.,‘.) Matriks centrosymmetric diberikan dengan bentuk khusus ordo ganjil seperti

Z% yang ditunjukkan dalam Persamaan (1.1).

Z_D_ Menghitung Am_1 untuk m = 3,5,7,9,11.

ﬁ Menduga bentuk umum A, " untuk m bilangan ganjil.

4. Membuktikan bentuk umum A,,”* dengan menunjukkan bahwa 4,, ' x 4,, =
I dan A,,, X A,,"* = I untuk m bilangan ganjil.

5. Menghitung Ay~ untuk m = 3,5,7,9,11 dan n = 2,3,4,5,6,7, 8.

6. Menduga bentuk umum A,,” " untuk m bilangan ganjil dan n bilangan asli.

7. Membuktikan bentuk umum A,, ™ untuk m bilangan ganjil dan n bilangan asli
menggunakan induksi matematika.

8. Mendapatkan bentuk umum dari determinan A,,, " untuk m bilangan ganjil dan

eIy WISe)] JIIeAg uejng jo AJISIdATU) dDTWE[S] 3y}

n bilangan asli menggunakan metode ekspansi kofaktor.
Mengaplikasikan bentuk umum dari determinan yang didapat ke dalam contoh

soal.
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lan

(- 1)mT+1n(n—1) (n—2)-

BAB YV
PENUTUP

m+3
(-1)"2 n(n-1)(n-2)-

(-2

nn-1) -n(n-1)(n-2)
2lan 3lan (mTﬁ)gan (mT_l)!a” 0 0 0
m+3 m+5
n ntn—1) (—1)T+n(n—1)(n—z)---<n—(mT")) (—1)T+n(n—1)(n—2)---(n—(mT_s)) . . .
a 2an () (*F)ar
L o <-1)"1;511(71—(1)(:1)—2)---("-('"7_9)) <-1>mz+7n<n—(1)<:)—2>---("'('"T”)) 0 0 0
ar an T )iqn %) 1gn
2 2
0 1 (—1)mT+7n(n—1)(n—2)---(n—(m%u)) (—1)mT+9n(n—1)(n—2)---(n—(mT_9)) 0 0 0
- e =y
0 0 = = 0 0 0
0 0 0 = 0 0 0
a
0 0 0 E 3 0 0
an am
0 0 0 (—1)mT+9n(n—(1)(n)—z)m(n—(mT_g)) (—1)mT+7n(n—(1)(1:)—2)---(11—("1%11)) 1 .
M7\ qn m=9)qn an
2 2
0 0 g (—l)mT”n(n—l)(n—2)---(n—(m2_7)) (—1)mT+5n(n—1)(n—2)~~-(n—(mT_9)) -n 1
e e v @
m+s - m+3 -
0 0 0 (-1) 2 n(n—(l)(?)—z)...(n—(st)) (-1) 2 n(n—(l)(:)—Z)---(n—(mT7)) n(n_nl) __:
m=3) g0 =3 1gn 2la a
2 2
o 0 0 O nm-nm-2-(n-(%) 0T n@-nm-2--(n-(%)) C-D(M=2)  n(n=1)
(Z)an (=2)an 3lan 2lan

an bentuk umum determinan dari matriks centrosymmetric A,,”" dengan m ganjil adalah a~

nm

0

-n

amn

erda;;rkan uraian dari hasil pembahasan, dapat disimpulkan bahwa bentuk umum matriks centrosymmetric A,,”"* dengan m ganjil adalah:

),

0
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gatif.

—

lﬁlgan dulat negatif ordo genap atau mencari bentuk matriks simetris lainnya berpangkat

ilik UIN Suska Riau State Islamic University of Sultan Syarif Kasim

)
yaramkan bagi pembaca yang ingin melanjutkan Tugas Akhir ini agar dapat meneliti

9)
an@t untuk mencari bentuk umum determinan matriks centrosymmetric berpangkat

bﬁlat ne

@osymetric berpangkat bilangan bulat negatif ordo ganjil. Oleh karena itu, penulis

lgan

= IPade@ penelitian ini membahas mengenai bentuk umum determinan matriks

ﬂ\/ e iptg mea dang-Undang

\._._,.l ) O&mam@ _&wz%:_v@mcm@_m: atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:

= hm a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masal
_ b. Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau.

unsuskaray 2+ Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau.
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