Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

0

I

⊆ Z

Sus

Ka

Z

a

8 IMPROVING THE FUNCTIONALITY OF THE ELECTRONIC cipta HEALTH RECORD SYSTEM THROUGH THE DEVELOPMENT OF THE ANESTHESIA MODULE milik

TUGAS AKHIR

Disusun Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Pada Jurusan Teknik Informatika

Oleh

MUHAMMAD REZA FAHLEVI NIM. 12050113422

FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU **PEKANBARU** 2024

niversity of Sultan Syarif Kasim Ria

0 Hak cipta milik ⊆ Z S Sn Ka Z a

State Islamic University of Sultan Syarif Kasim Ria

- Hak Cipta Dilindungi Undang-Undang . Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:
- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau. . Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau.

LEMBAR PERSETUJUAN

IMPROVING THE FUNCTIONALITY OF THE ELECTRONIC HEALTH RECORD SYSTEM THROUGH THE DEVELOPMENT OF THE ANESTHESIA MODULE

TUGAS AKHIR

Oleh

MUHAMMAD REZA FAHLEVI NIM. 12050113422

Telah diperiksa dan disetujui sebagai Laporan Tugas Akhir di Pekanbaru, pada tanggal 1 Juli 2024

Pembimbing I,

NIP. 198705242015031006

0 Ka N 8

Ha ~ cipta milik \subset Z S Sn

- Hak Cipta Dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:
- Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.

LEMBAR PENGESAHAN

IMPROVING THE FUNCTIONALITY OF THE ELECTRONIC HEALTH RECORD SYSTEM THROUGH THE DEVELOPMENT OF THE ANESTHESIA MODULE

Oleh

MUHAMMAD REZA FAHLEVI NIM. 12050113422

Telah dipertahankan di depan sidang dewan penguji sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik pada Universitas Islam Negeri Sultan Syarif Kasim Riau

Pekanbaru, 1 Juli 2024

Mengesahkan,

Ketua Jurusan,

ISKANDAR, S.T, M.T NIP. 19821216 201503 1 003

NIP, 19640301 1992031 003 **DEWAN PENGUJI**

Dr. HARTONO, M.Pd

Dekan,

: Eka Pandu Cynthia, ST, M.Kom Ketua Pembimbing I : Teddie Darmizal, S.T., M.T.I

Penguji I Penguji II

State Islamic University of Sultan Syarif Kasim Ria

: Muhammad Affandes, S.T., M.T : Nazruddin Safaat Harahap, S.T., M.T I

State Islamic University of Sultan Syarif Kasim Ria

LEMBAR HAK ATAS KEKAYAAN INTELEKTUAL

Tugas Akhir yang tidak diterbitkan ini terdaftar dan tersedia di Perpustakaan Universitas Islam Negeri Sultan Syarif Kasim Riau adalah terbuka untuk umum dengan ketentuan bahwa hak cipta pada penulis. Referensi kepustakaan diperkenankan dicatat, tetapi pengutipan atau ringkasan hanya dapat dilakukan seizin penulis dan harus disertai dengan kebiasaan ilmiah untuk menyebutkan sumbernya.

Penggandaan atau penerbitan sebagian atau seluruh Tugas Akhir ini harus memperoleh izin dari Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau. Perpustakaan yang meminjamkan Tugas Akhir ini untuk anggotanya diharapkan untuk mengisi nama, tanda peminjaman dan tanggal pinjam.

UIN SUSKA RIAU

LEMBAR PERNYATAAN

Dengan ini saya menyatakan bahwa dalam Tugas Akhir ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di suatu Perguruan Tinggi, dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain kecuali yang secara tertulis acu dalam naskah ini dan disebutkan didalam daftar pustaka.

Pekanbaru, 4 Juli 2024

Yang membuat pernyataan,

MUHAMMAD REZA FAHLEVI

NIM. 12050113422

UIN SUSKA RIAU

Hak Cipta Dilindungi Undang-Undang

a

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

. Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

LEMBAR PERSEMBAHAN

Alhamdulillahi Rabbil'alamin

Dengan Mengucapkan Syukur Pada Allah SWT, Alhamdulillah telah menyelesaikan Tugas Akhir ini.

Saya Persembahkan Tugas Akhir ini Kepada kedua Orang Tua, Adik, Keluarga Besar dan Kerabat.

Semoga Tugas Akhir ini Bermanfaat bagi Pembaca. Aamiin Allahuma Aamiin.

N SUSKA RTA

Hak Cipta Dilindungi Undang-Undang

Hak cipta milik

CIN

S Sn

ka

N a

State Islamic University of Sultan Syarif Kasim Ria

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

0 I 8 ~ cipta milik Z S S ka N 8

Hak Cipta Dilindungi Undang-Undang

Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Saya yang bertanda tangan di bawah ini:

Nama Muhammad Reza Fahlevi

NIM : 12050113422

Tempat/Tgl. Lahir : Pekanbaru, 6 Juni 2002

Fakultas/Pascasarjana: Sains dan Teknologi

Prodi : Teknik Informatika

Judul Jurnal : Improving The Functionality of The Electronic Health Record

SURAT PERNYATAAN

System Through The Development of The Anesthesia Module

Menyatakan dengan sebenar-benarnya bahwa:

1. Penulisan jurnal dengan judul sebagaimana tersebut di atas adalah hasil pemikiran dan penelitian sava sendiri.

2. Semua kutipan pada karya tulis saya ini sudah disebutkan sumbernya

3. Oleh karena itu jurnal saya ini, saya nyatakan bebas dari plagiat.

4. Apabila dikemudian hari terbukti terdapat plagiat dalam penulisan jurnal saya tersebut, maka saya bersedia menerima sanksi sesuai peraturan perundang-undangan.

Demikian Surat Pernyataan ini saya buat dengan penuh kesadaran dan tanpa paksaan dari pihak manapun juga.

> Pekanbaru, 4 Juli 2024 Yang membuat pernyataan

hanya

n a


ABSTRA CE

olume 09 Issue 06 June-2024, Page No.- 4288-4294

ODOI: 10.45/191/66/v9i06.16, I.F. – 8.227

Z

S

Improving the Functionality of the Electronic Health Record System through the Development of the Anesthesia Module

Muhammad Reza Fahlevi¹, Teddie Darmizal², Muhammad Affandes³, Nazruddin Safaat H⁴

pepartment of Informatics Engineering, Faculty of Science & Technology, Sultan Syarif Kasim Riau State Islamic University, Pekanbaru, Indonesia

Corresponding author: *Teddie Darmizal

Exercised With the advancement of healthcare technology, the use of Electronic Health Records (EHR) has become more providing benefits such as cost reduction, improved healthcare quality, and enhanced data recording and mobility. To remain effective, EHRs must meet requirements such as data completeness, failure resilience, high availability, and security. Pekarbaru army hospital has adopted EHR since 2022 for several main services, except for the anesthesia service. The anesthesia service will uses paper records, which are inefficient and lag behind other services. The anesthesia process, involving extensive information and coordination, greatly requires an EHR system. The development of an anesthesia module is expected to facilitate effective: This study aims to improve the functionality of the electronic health record system (EHRS) in managing medical records in the execution service by developing an anesthesia module at the Pekanbaru Army Hospital.

Method? The software development methodology used in this research is Agile Methodology where the process of analyzing user reeds, collecting data, implementing the system, and evaluating and validating the system.

Result: The Anesthesia Module that has been built has various features including: anesthesia patient registration, pre-anesthesia patient registration with laboratory and radiology systems. Through testing carried out with the black box test technique, 98% of the system functionality runs well and with the user acceptable test technique, 94% of the system functionality can be accepted by users.

KE WORDS: Anesthesia Module, Electronic Health Record, Operating Room, Hospital Information System

I. INTRODUCTION

being adopted as digital information systems for hospital ation that include both clinical and administrative data. The importance of the interaction between social and technical factors must be considered in the implementation and adaptation of effective strategies in complex and busy hospitals. These systems have great potential to improve the safety, quality, and efficiency of healthcare in hospitals (Tapuria et al., 2021).

The use of EHRs in medical practice has increased significantly in recent years. EHRs offer valuable opportunities to improve health monitoring and evaluate healthcare services which can lead to improved management and promotion of public health(Kataria & Ravindran, 2020). Research shows that most physicians use the available information to thoroughly assess a patient's condition, assist with clinical decision-making, and facilitate communication between patient care teams(Evans et al., 2014). As of June 2015, three-quarters of physicians in the United States have used EHRs in their practices(Kruse Clemens Scottand Kothman, 2016).

the widespread implementation of EHRs allows for the digital recording of patients and the extraction of useful clinical data. Some accessible secondary applications include quality management, health management, and translational

research(Hanauer et al., 2015). All these secondary applications aim to improve patient care(C. P. Friedman et al., 2010; C. Friedman & Rigby, 2013). The quality of healthcare depends on the quality of the data. Therefore, inaccurate data can lead to many errors(Abramson et al., 2011).

With the development of healthcare technology, the use of EHRs has become more effective and provides benefits such as lowering costs, improving the quality of healthcare, and aiding data recording and mobility. To remain effective, EHRs must meet requirements such as data completeness, resilience to failure, high availability, and security(Allard et al., 2010).

Some governments have shown interest in using EHRs because of the expected benefits. For example, in 2004, the United States government decided that most Americans should be connected to an EHR system by 2014(Hesse et al., 2010). The American Recovery and Reinvestment Act of 2009 set aside \$19 billion for the digitization of health records in the US. Similarly, the European Union countries plan to have a similar health system by 2015, as per a high-level eHealth conference in 2010. The aim is to create quality and efficient healthcare(Benaloh et al., 2009).

EHR development in Taiwan was initiated by the National Health Informatics Project. Statistics in 2016 showed that 411 out of 496 hospitals (80.4%) and approximately 5,244 out of 9,782 private clinics (53.6%) in Taiwan have been certified as having interoperable EHRs(Wen Hsyien-Chiaand Chang,

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh ₫: da I.

2019). In Indonesia, although the implementation of EHRs No has not been evenly distributed in all hospitals, it continues to growalong with the advancement of information technology. However there are several obstacles, such as technical stancards, information security, and interoperability between EHR3(Talagr & Sewu, 2023). The Indonesian Ministry of Health has made it mandatory for every health facility to have and ENR but standardization of EHR formats has never been passed, and regulations regarding mandatory EHRs are not

The implementation of EHRs in various hospital departments has many positive impacts, both for hospitals and pateents. The survey shows that 66% of respondents prefer EMRs over paper records, with 51% stating EHRs save time 32.7% saying EHRs store more data, 30.6% citing easier data access, 22.1% stating easier report generation, and 320.336 stating EHRs improve service quality(Oumer et al.,

Rekambaru Army Hospital, a class D general hospital, has adopted EHR since 2022 with several key modules, except the surgical module. The surgical module still uses paper records, which is inefficient and lags behind other services. The anexthesia process, which involves a lot of information and coordination, urgently needs an EHR system.

Therefore, the development of the anesthesia module is expected to facilitate doctors and anesthesia nurses in patient medical information management and assist the execution sage of surgery patients, thereby improving the quality of heal services and care coordination at Pekanbaru army

METHODOLOGY

masalah

₹1. Research Design

The research design consists of stages that are integrated with each other. The purpose of research design is to provide an appropriate framework for a study. A very important decision in the research design process is the choice of research approach, as it determines how relevant information will be obtained for a study. However, the research design process involves many interrelated decisions(Jilcha Sileyew, 2920).

There are various models of software development approaches, one of which is the agile model. Agile combines incremental and iterative processes with a primary focus on customer satisfaction. This SDLC model breaks down the entire software development process into incremental steps(Schramm et al., 2023).

Agile represents a series of iterative and incremental approaches that emphasize adaptability and collaboration with customers. Agile projects are divided into short iterations called sprints, typically lasting 1-4 weeks. Agile emphasizes collaboration between developers, testers, and customers throughout the project (Hossain, 2023). Compared to traditional SDLCs such as Waterfall that require sequential execution of each step, Agile adopts an adaptive approach that allows software development teams to adapt to changing customer needs(Mishra & Alzoubi, 2023).

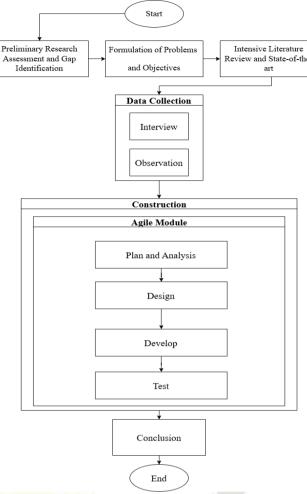


Figure 1 Research Design

2.1.1. Preliminary Research Assessment and Gap Identification

Researchers evaluated and also identified gaps that occurred in the implementation of EHR in anesthesia services. The evaluation was conducted to determine whether surgical services at Pekanbaru army hospital require an anesthesia module. The findings of the evaluation showed that the anesthesia service at Pekanbaru army hospital requires an EHR system.

2.1.2. Formulation of Problem and Objectives

The service of recording medical records in the anesthesia service of Pekanbaru army hospital still uses paper-based methods. Because the recording process is still manual, there are a number of errors, such as losing medical records and difficulties in accessing medical records. Based on the identification of these problems, an anesthesia module is needed to improve the quality of surgical services at Pekanbaru army hospital.

2.1.3. Intensive Literature Review and State-ofthe-Art

Anesthesia applications focus on integration with specialized electronic health record networks, allowing anesthesia records to be connected with hospital clinical data stores. This has the potential to improve quality of care, patient safety, and operations management (Herasevich et al., 2014; Matava et al., 2020). Electronic anesthesia records

penelitian

penulisan

karya

ilmiah, penyusunan laporan,

penulisan

kritik atau tinjauan suatu masalah

NIN SUSSKA RIAU

have a higher level of information completeness than handwritten anesthesia records, supporting document quality improvement and user satisfaction evolution. In addition, this application can also save and costs (Alkatheri et al., 2022) The application of the anesthesia module in electronic health records can also improve the analytical process, improve patient identification and restration, reduce programming or transfer errors, and improve response time(Mardani et al., n.d.).

Based on the Decree of the Director General of Medical Services No. YM. 02.03.3.5.2626 concerning the Accreditation Commission for Hospitals and Other Health Facilities (KARS), KARS has assessment standards that hospitals in Indonesia must comply with to ensure the quality, safety, and sustainability of health services. These standards are known as SNARS (National Hospital Accreditation Standards). The application of SNARS to the anesthesia module includes various aspects that must be met by the central surgical installation in the process of service. The 2017 National Hospital Accreditation Standards stipulate that central surgical installation services must meet the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the anesthesia and surgical services that the standards in the standards in the standards are standards in the standards are standards in the standards are standards a

By considering the information obtained from the literature review and the National Hospital Accreditation Standards, researchers built a system design using these sources as a guide in developing the anesthesia module.

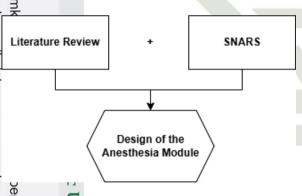


Figure 2 Design of the Anesthesia Module

The anesthesia process is divided into three parts, namely pre-anesthesia, intra-anesthesia, and post-anesthesia. The purpose of pre-anesthesia is to assess the teasibility and preparation of the patient's condition before anesthesia is performed. Intra-anesthesia is the process when anesthesia is in progress. Post-anesthesia is the process that occurs after the patient has completed the surgery process. This post-anesthesia process involves monitoring the patient by the anesthesia team after recovery from anesthesia(Bilal A. Siddiqui; Peggy Y. Kim., 2023).

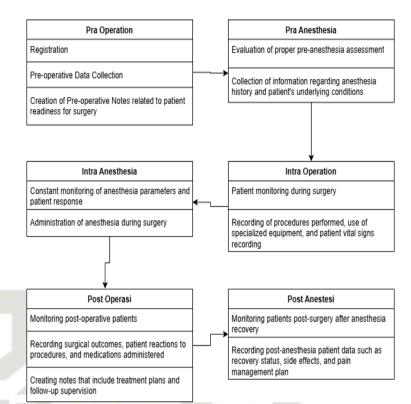


Figure 3 Business Process of the Anesthesia Module

2.1.4. Data Collection

The data collection methods used by researchers include:

1. Interview

Interviews were conducted with anesthesia doctors and nurses at Pekanbaru army hospital. The purpose of this interview was to obtain information about the workflow of anesthesia services at the hospital. In addition, researchers also collected information about the responsibilities and roles of anesthesia medical personnel, as well as other relevant information.

2. Observation

Observations were made of the EHR that had been implemented at Pekanbaru army hospital. The purpose of this observation is so that the system being built can be in accordance with the business processes of surgical services at the hospital.

III. RESULT

3.1. Construction

The software development method used in this research is the Agile model. The following are the stages of system design based on the Agile model.

3.1.1. Design

After the data collection process is complete, the use case diagram and class diagram are designed. The purpose of this design is to facilitate researchers in implementing the results of the analysis into the system to be created.

2. Dilarang mengumumkan dan memperbanyak sebagian atau a Dilarang mengutip Pengutipan tidak merugikan kepentingan yang wajar UIN Pengutipan hanya sebagian atau kepentingan seluruh karya tulis pendidikan, penelitiar gan yang wajar UIN S ini tanpa

EHRs Anesthesia Center Managing Safety Checklists Managing Pra Anesthesia

Figure 4 Use Case Diagram

co bedah tim operasi bedah_pasien_operasi bedah_ceklis_keselamatan po_id : Integer ck id: Intege tim_po_id: Integer po_pl_id : Integer ck_po_id: Intege tim_pegawai_id: Integer po_diag_pramed : Integer ck_si_identitas: Integer tim role: Integer po diag pramed st: Integer ck si lokasi op: Integer po_diag_pramed_nd : Integer ck_si_mesin_lgkp: Integer po_diag_pramed_rd : Integer po_diag_pramed_th : Integer bedah_lembar_edukasi - Ita id: Integer actionView() Ita po id: Integer actionIndex() actionCreate() Ita_au_kelebihan: Text + actionView() actionupdate() Ita_au_kekurangan: Text + actionCreate() - Ita_au_komplikasi: Text actionPreview() bedah_pra_anestes + actionPrint() pa_id: Integer + actionIndex() pa po id: Integer + actionView() pa diagnosa prabedah: Text + actionCreate() pa_rencana_tindakan: Text + actionupdate() pa_anamnese: Intege - pi_id: Integer pi_po_id: Integer pi_persiapan_anestesi: Text bedah_inform_consent + actionIndex() pi waktu: Time actionView() pi_anestesi_id: Intege - ic_po_id: Integer - actionCreate() - ic_jenis_tindakan: Integer + actionupdate() - ic dokter pelaksana: Integer - ic_pemberi_informasi: Integer actionCreate() bedah_intra_anestes + actionupdate() ia_id: Integer ia_po_id: Intege actionView() ia_nadi: Integer + actionCreate() ia_pernafasan: Integer bedah_pasca_anestesi - actionupdate() ia_darah_sistole: Integer pan_id: Integer pan po id: Integer pan_jam_tiba: Time actionIndex() pan_jam_keluar: Time pan_jenis_tool: Text actionCreate()

+ actionIndex()

+ actionView() + actionCreate()

actionupdate()

Figure 5 Class Diagram

Riau

+ actionupdate()

3.1.2. Develop

In the development stage, the unified modeling language that has been created based on the previous analysis is used as a guide. This stage begins with the construction of the database and continues with the coding stage. The following is a view of the system that has been developed.

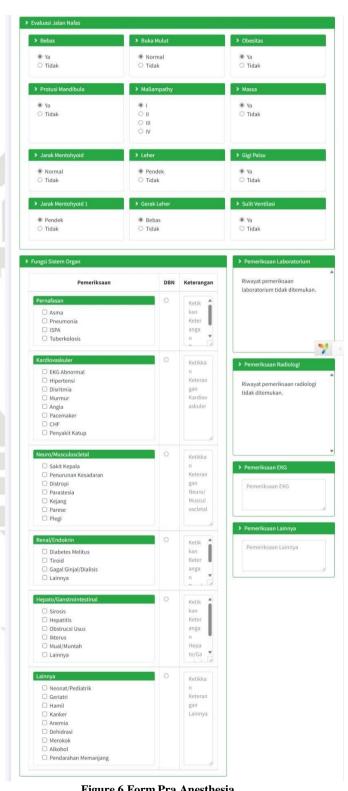


Figure 6 Form Pra Anesthesia

In the pre-anesthesia form, the user can fill in information related to the data that needs to be filled in before performing anesthesia. Such as filling in for pre-surgical

diagnoses, action plans, anesthesia, anesthesia history,

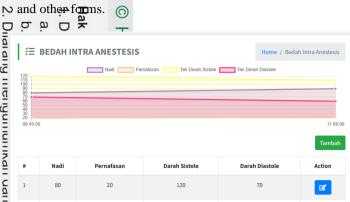


Figure 7 Form Intra Anesthesia

The intra Anesthesia form, the user can fill in pulse, respectively, systole blood pressure, diastole blood pressure, and doing. The addition of time can be done during the anesthesia process.

lam Tiba Dirua	ing Pemulihar	1	Keluar Jam					
23:30		0	23:30		0			
Jenis Tools Digunakan	sad							
skor Tools	123							
Instruksi Posi	Operasi							
lwasi :	○KU ○	TD ® HR	RR OS dan Pendaraha	an				
Posisi :	○ Telent	○ Telentang ® Tengkurap ○ Lithotomi						
dakan Minum	asd	asd						
nfus:	asd	asd						
ransfusi :	asd							
Program Analgetik :	asd							
Program Mual Muntah :	asdasd	la						
ain-lain :	asd							

Figure 8 Post Anesthesia

m Riau

After the anesthesia process is complete, the next stage is post-anesthesia. In the post-anesthesia form, the user can fill in what time the patient comes to the recovery room, what time the patient comes out, and there are also several fields in the postoperative instructions.

3.1.3. *Testing*

Tested with Blackbox and User Acceptance Testing techniques.

a. Blackbox

Blackbox testing aims to determine whether the system's functionality is in accordance with user expectations. This test was conducted by two users with nine functional systems and 20 test cases. The results show that the system runs 98% in accordance with its purpose and function.

Table 1 Test Case

Z

No	Test Name	Test Case		
1				
1	Testing Viewing Patient List	The examiner enters the Identification Number as the username and password in the provided fields, then presses the 'Login' button.		
2	Testing Selecting Patient List	The examiner selects the 'Patient List' menu on the system sidebar.		
3	Testing Opening Safety Checklist Menu	The examiner selects the list of registered patients.		
4	Testing Filling out Safety Checklist Form	The examiner selects the 'Safety Checklist' menu on the system sidebar.		
5	Testing Opening Informed Consent Menu	The examiner fills out the available form in the 'Safety Checklist' menu, and after completing all the fields, the examiner presses the 'Save' button.		
6	Testing Filling out Informed Consent Form	The examiner selects the 'Informed Consent' menu on the system sidebar.		
7	Testing Opening Anesthesia Education Sheet Menu	The examiner fills out the available form in the 'Informed Consent' menu, and after completing all the fields, the examiner presses the 'Save' button.		
8	Testing Filling out Anesthesia Education Sheet Form	The examiner selects the 'Anesthesia Education Sheet' menu on the system sidebar		
9	Testing Opening Pre- Induction Menu	The examiner fills out the available form in the 'Anesthesia Education Sheet' menu, and after completing all the fields, the examiner presses the 'Save' button.		
10	Testing Filling out Pre-Induction Form	The examiner selects the 'Pre-Induction' menu on the system sidebar.		
	•••			

UN SUSKA RIAC

b. User Acceptance Testing (UAT)

The testing mechanism is carried out by demonstrating the program to two respondents, namely nurses and doctors, based on predetermined test cases.

Pable 2d est Result(UAT)

No	Assessment	Number of	Number	Total
		Doctor	of Nurse	Score
		Test Cases	Test	
			Cases	
î la	Weary Good	11	15	130
e 25	pa Good =	7	3	40
ug 3th	eutral	0	0	0
₹4£	5 Less	0	0	0
n 58	a Vary Les ✓	0	0	0
ent (ep	a_oegl ∾	18	18	170

Based on the results of the UAT testing that has been carried but, it can be concluded that the Central Surgical EHR system for the anesthesia module is quite good, with a percentage of 94%.

IN. PASEUSSION

The development of this electronic health record system still requires optimizing the features that are not yet available. There are still many features that can be developed in the electronic health record system for the anesthesia module. Especially in the intra-anesthesia feature, there are many important in the intra-anesthesia feature, there are many important in the intra-anesthesia feature, there are many important for the made to maximize functions, such as adding features to check pulse, breathing, and tension by until the poor of the contraction of

V. CONCLUSION

the development of an electronic health record (EHR) for the allest fies a module in Pekanbaru Army Hospital has had a significant impact on the progress of hospital services. The implementation of the system increases the effectiveness and accuracy of the management of medical records. With an integrated system recording patient data and anesthesia procedures becomes more structured and easily accessible. This case reduce the risk of errors and improve overall patient safety.

REFERENCES O

- 1. QAbramson, E.-L., Malhotra, S., Fischer, K., Edwards, S.A., Pfoh, E. R., Osorio, S. N., Cheriff, A., & Kaushal, QR. (2011). Fransitioning Between Electronic Health Records: Effects on Ambulatory Prescribing Safety. Quantum of General Internal Medicine, 26(8), 868–874. https://doi.org/10.1007/s11606-011-1703-z
- 2. Alkatheri, F. Albarrak, A., & Khan, S. A. (2022).

 Anaesthesia Electronic Records Versus Handwritten

 Anesthetic Records: An Ambi-directional cohort study.

 2022.
- 3. Allard, T., Anciaux, N., Bouganim, L., Guo, Y., Le Folgoc, L., Nguyen, B., Pucheral, P., Ray, I., Ray, I., & Yin, S. (2010). Secure Personal Data Servers: A Vision Paper. *Proc. VLDB Endow.*, 3(1–2), 25–35. https://doi.org/10.14778/1920841.1920850

- 4. Benaloh, J., Chase, M., Horvitz, E., & Lauter, K. (2009). Patient Controlled Encryption: Ensuring Privacy of Electronic Medical Records. *Proceedings of the 2009 ACM Workshop on Cloud Computing Security*, 103–114. https://doi.org/10.1145/1655008.1655024
- 5. Bilal A. Siddiqui; Peggy Y. Kim. (2023). *Anesthesia Stages*.
- Emanuel, A. (2019). Challenges and Proposed Model in Implementing Integrated Medical Record Systems in Indonesia. *International Journal of Advanced Science* and Technology, 130, 1–10. https://doi.org/10.33832/ijast.2019.130.01
- Evans, W. K., Ashbury, F. D., Hogue, G. L., Smith, A., & Pun, J. (2014). Implementing a Regional Oncology Information System: Approach and Lessons Learned. *Current Oncology*, 21(5), 224–233. https://doi.org/10.3747/co.21.1923
- Friedman, C. P., Wong, A. K., & Blumenthal, D. (2010). Achieving a Nationwide Learning Health System. Science Translational Medicine, 2(57), 57cm29-57cm29.
 - https://doi.org/10.1126/scitranslmed.3001456
- Friedman, C., & Rigby, M. (2013). Conceptualising and creating a global learning health system.
 International Journal of Medical Informatics, 82(4), e63–e71.
 https://doi.org/https://doi.org/10.1016/j.ijmedinf.2012.
 - https://doi.org/https://doi.org/10.1016/j.ijmedinf.2012. 05.010
- Hanauer, D. A., Mei, Q., Law, J., Khanna, R., & Zheng, K. (2015). Supporting information retrieval from electronic health records: A report of University of Michigan's nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE). *Journal of Biomedical Informatics*, 55, 290–300.
 - https://doi.org/https://doi.org/10.1016/j.jbi.2015.05.00
- Herasevich, V., Ellsworth, M. A., Hebl, J. R., Brown, M. J., & Pickering, B. W. (2014). Information needs for the OR and PACU electronic medical record. *Applied Clinical Informatics*, 5(3), 630–641. https://doi.org/10.4338/ACI-2014-02-RA-0015
- 12. Hesse, B. W., Hansen, D., Finholt, T., Munson, S., Kellogg, W., & Thomas, J. C. (2010). Social Participation in Health 2.0. *Computer*, 43(11), 45–52. https://doi.org/10.1109/MC.2010.326
- 13. Hossain, M. (2023). Software Development Life Cycle (SDLC) Methodologies for Information Systems Project Management. https://doi.org/10.36948/ijfmr.2023.v05i05.6223
- Jilcha Sileyew, K. (2020). Research Design and Methodology. In *Cyberspace*. IntechOpen. https://doi.org/10.5772/intechopen.85731

menyebutkan sumber:

State

Islamic University of Sultan Syarif Kasim Riau

- UN SUSKA RIAU
 - 15. Kataria, S., & Ravindran, V. (2020). Electronic health records: A critical appraisal of strengths and Dinatations. Journal of the Royal College of Physicians Edinburgh, 50(3), 262–268. Chttps://doi.org/10.4997/JRCPE.2020.309
 - Edinburgh, 50(3), 262–268.

 Consider the state of the Restate of Thysicians of The Restate of Thysicians of Thysic
 - Mardani, H., Bashiri, A., Sabetian, G., Shokrpour, N., Sabetian, G., Shokrpour, N., Sabetian, R. (n.d.). HMIS Management and Information Science Development and Evaluation of Electronic Medical Admission Module in Intensive Care Unit: A Study in Iran. Shifts://doi.org/10.30476/JHMI.2022.95017.1125
 - Romatava, C., Caldeira-Kulbakas, M., & Chisholm, J. (2020). Improved difficult airway documentation using interestrictured notes in Anesthesia Information of Amesthesia (Vol. 67, Issue 5, pp. 625–627). Springer. Ohtos://doi.org/10.1007/s12630-019-01544-z
 - Description of the second of t
 - 20 Offmer, A., Muhye, A., Dagne, I., Ishak, N., Ale, A., & Betele, A. (2021). Utilization, Determinants, and Prospects of Electronic Medical Records in Ethiopia.

- BioMed Research International, 2021. https://doi.org/10.1155/2021/2230618
- Schramm, V., Damasceno, A., & Schramm, F. (2023).
 SUPPORTING THE CHOICE OF THE BEST-FIT AGILE MODEL USING FITRADEOFF. *Pesquisa Operacional*, 43. https://doi.org/10.1590/0101-7438 2023.043spe1.00264750
- 22. Sutoto, dr. (2018). STANDAR NASIONAL AKREDITASI RUMAH SAKIT.
- Tapuria, A., Porat, T., Kalra, D., Dsouza, G., Xiaohui, S., & Curcin, V. (2021). Impact of patient access to their electronic health record: systematic review. *Informatics for Health and Social Care*, 46(2), 192–204. https://doi.org/10.1080/17538157.2021.1879810
- 24. Tilaar, T. S., & Sewu, P. L. S. (2023). Review of Electronic Medical Records in Indonesia and its Developments Based on Legal Regulations in Indonesia and its Harmonization with Electronic Health Records (Manual for Developing Countries). *Daengku: Journal of Humanities and Social Sciences Innovation*, 3(3), 422–430. https://doi.org/10.35877/454RI.daengku1662
- Wen Hsyien-Chia and Chang, W.-P. and H. M.-H. and H. C.-H. and C. C.-M. (2019). An Assessment of the Interoperability of Electronic Health Record Exchanges Among Hospitals and Clinics in Taiwan. *JMIR Med Inform*, 7(1), e12630. https://doi.org/10.2196/12630

UIN SUSKA RIAU