Analisa Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes


  • Novi Lestari * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Reski Mai Candra Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Confusion Matrix; Naïve Bayes; Preprocessing; TF-IDF; WeTV

Abstract

The most popular online streaming application is WeTV. WeTV is an internet-based streaming service that is used by the public as an entertainment medium. The WeTV application has been downloaded by up to 50,000 users. Application user ratings may affect the image of the application depending on the services provided by the application developer. Many positive, neutral and negative reactions have had a big impact on WeTV. Categorizing user ratings cannot be done manually because it is not easy with very large amounts of data. Therefore, the purpose of this research is to analyze the user rating of the WeTV application on the Goggle Playstore. In this study the processing steps consisted of cleaning, case convolution, tokenization, normalization, stopword and vape removal, after which it was continued with the TF-IDF step and the final result was a confused matrix using the Python programming language with Naive Bayes classifier. method in this research. Using 12,000 reviews found on Google Playstore. to generate positive, negative and neutral sentiments from Wetv application user comments in the play store. The test with the highest precision value of 0.64% with a -1 precision value of 0.58% in Class Recall gives a value of 0.89% in the 90%:10 balance model. 

Downloads

Download data is not yet available.

References

T. D. Soesilo And S. Irawan, “Dampak Penggunaan Smartphone Terhadap Interaksi Sosial Remaja, T. D. Soesilo Dan S. Irawan, No. 2019, Hal. 139-149, 2020.

R.I.P. Ganggi, “Materi Dasar Literasi Media Sosial Sebagai Salah Satu Upaya Membangun Masyarakat Kritis Di Media Sosial,” Anuva, Vol. 2, Tidak. 4, Hal. 337, Doi: 10.14710/Anuva.2.4.337-345, 2018.

M. Ngafifi Dan M. Ngafifi, “Kemajuan Teknologi Dan Pola Kehidupan Manusia Dalam Perspektif Sosial Budaya,” No. 3, Halaman 33–47.

Reichenbach Et Al., "No. 2019; Penelitian Matriks Retina; Vol. 561, No. 3; Hal. S2–S3.

U. Kulsum, M. Jajuli, And N. Sulistiyowati, “Analisis Sentimen Aplikasi Wetv Di Google Play Store Menggunakan Algoritma Support Vector Machine,” J. Appl. Informatics Comput., Vol. 6, No. 2, Pp. 205–212, 2022, Doi: 10.30871/Jaic.V6i2.4802.

I. Zulfa And E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,” Ijccs (Indonesian J. Comput. Cybern. Syst., Vol. 11, No. 2, P. 187, 2017, Doi: 10.22146/Ijccs.24716.

S. R. Wardhana, “Analisis Sentimen Pada Opini Pengguna Aplikasi Mobile Untuk Evaluasi Faktor Kebergunaan,” Tesis, 2017.

G. P. Kawani, “Implementasi Naive Bayes,” J. Informatics, Inf. Syst. Softw. Eng. Appl., Vol. 1, No. 2, Pp. 73–81, 2019, Doi: 10.20895/Inista.V1i2.73.

F. N. Ramaulidyah, M. N. Hayati, And R. Goejantoro, “Perbandingan Metode Klasifikasi Naive Bayes Dan K-Nearest Neighbor Pada Data Status Pembayaran Pajak Pertambahan Nilai Di Kantor Pelayanan Pajak Pratama Samarinda Ulu,” Eksponensial, Vol. 12, No. 2, Pp. 161–165, 2021, [Online]. Available: Http://Jurnal.Fmipa.Unmul.Ac.Id/Index.Php/Exponensial/Article/View/809%0ahttp://Jurnal.Fmipa.Unmul.Ac.Id/Index.Php/Exponensial/Article/Download/809/346

A. Kusuma And A. Nugroho, “Analisa Sentimen Pada Twitter Terhadap Kenaikan Tarif Dasar Listrik Dengan Metode Naïve Bayes,” Vol. 15, No. 2, Pp. 137–146, 2021.

Y. Cahyono, “Analisis Sentiment Pada Sosial Media Twitter Menggunakan Naїve Bayes Classifier Dengan Feature Selection Particle Swarm Optimization Dan Term Frequency,” Pp. 14–19.

U. M. Kategori, O. Shop, And P. Instagram, “Online Shop Pada Instagram,” 2021.

N. Yustira, D. Witarsyah, And ..., “Implementasi Algoritma Naïve Bayes Classification Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu,” Eproceedings 2021, [Online]. Available: Https://Openlibrarypublications.Telkomuniversity.Ac.Id/Index.Php/Engineering/Article/View/16721%0ahttps://Openlibrarypublications.Telkomuniversity.Ac.Id/Index.Php/Engineering/Article/View/16721/16429

R. I. H. Eka Afrianti, Fthoni, “Text Classification With Naïve Bayes Classifier ( Nbc ) For Grouping Report Description And Recovery Time Duration Of Pt . Pln (Persero) Ws2jb Palembang Area,” (E-Journal), Vol. 12, No. 1, Pp. 1955–1961, 2020.

Ainurrohmah, “Akurasi Algoritma Klasifikasi Pada Software Rapidminer Dan Weka,” Prisma, Vol. 4, Pp. 493–499, 2021, [Online]. Available: Https://Journal.Unnes.Ac.Id/Sju/Index.Php/Prisma/

A. Arista, I. Yuliana, And N. Kustiningsih, “Journal Of Accounting And Financial Issue,” J. Account. Financ., Vol. 5, No. 1, Pp. 25–36, 2020.

F. S. Jumeilah, “Penerapan Support Vector Machine (Svm) Untuk Pengkategorian Penelitian,” J. Resti (Rekayasa Sist. Dan Teknol. Informasi), Vol. 1, No. 1, Pp. 19–25, 2017, Doi: 10.29207/Resti.V1i1.11.

S. Stephanie, D. S. Naga, And V. C. Mawardi, “Pendeteksian Kemiripan Teks Deskripsi Diri Pada E-Recruitment Karyawan Dengan Metode Rabin Karp Dan Jaro Winkler Distance,” J. Ilmu Komput. Dan Sist. Inf., Vol. 9, No. 1, P. 187, 2021, Doi: 10.24912/Jiksi.V9i1.11593.

B. A. B. Iii, A. Dan, And P. Sistem, “No Title,” Pp. 22–58.

Anjali, G. Jivani, And M. Anjali, “A Comparative Study Of Stemming Algorithms,” October, Vol. 2, No. 2004, Pp. 1930–1938, 2007.

N. K. Widyasanti, I. K. Gede, D. Putra, N. Kadek, And D. Rusjayanthi, “Seleksi Fitur Bobot Kata Dengan Metode Tfidf Untuk Ringkasan Bahasa Indonesia,” Vol. 6, No. 2, Pp. 119–126, 2018.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” Inovtek Polbeng - Seri Inform., Vol. 3, No. 1, P. 50, 2018, Doi: 10.35314/Isi.V3i1.335.

I. W. Saputro And B. W. Sari, “Uji Performa Algoritma Naïve Bayes Untuk Prediksi Masa Studi Mahasiswa,” Creat. Inf. Technol. J., Vol. 6, No. 1, P. 1, 2020, Doi: 10.24076/Citec.2019v6i1.178.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisa Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes

Dimensions Badge
Article History
Submitted: 2023-04-10
Published: 2023-04-30
Abstract View: 141 times
PDF Download: 138 times
How to Cite
Lestari, N., Haerani, E., & Candra, R. (2023). Analisa Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes. Journal of Information System Research (JOSH), 4(3), 874-882. https://doi.org/10.47065/josh.v4i3.3355
Issue
Section
Articles

Most read articles by the same author(s)