Analisa Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes
Abstract
The most popular online streaming application is WeTV. WeTV is an internet-based streaming service that is used by the public as an entertainment medium. The WeTV application has been downloaded by up to 50,000 users. Application user ratings may affect the image of the application depending on the services provided by the application developer. Many positive, neutral and negative reactions have had a big impact on WeTV. Categorizing user ratings cannot be done manually because it is not easy with very large amounts of data. Therefore, the purpose of this research is to analyze the user rating of the WeTV application on the Goggle Playstore. In this study the processing steps consisted of cleaning, case convolution, tokenization, normalization, stopword and vape removal, after which it was continued with the TF-IDF step and the final result was a confused matrix using the Python programming language with Naive Bayes classifier. method in this research. Using 12,000 reviews found on Google Playstore. to generate positive, negative and neutral sentiments from Wetv application user comments in the play store. The test with the highest precision value of 0.64% with a -1 precision value of 0.58% in Class Recall gives a value of 0.89% in the 90%:10 balance model.
Downloads
References
T. D. Soesilo And S. Irawan, “Dampak Penggunaan Smartphone Terhadap Interaksi Sosial Remaja, T. D. Soesilo Dan S. Irawan, No. 2019, Hal. 139-149, 2020.
R.I.P. Ganggi, “Materi Dasar Literasi Media Sosial Sebagai Salah Satu Upaya Membangun Masyarakat Kritis Di Media Sosial,” Anuva, Vol. 2, Tidak. 4, Hal. 337, Doi: 10.14710/Anuva.2.4.337-345, 2018.
M. Ngafifi Dan M. Ngafifi, “Kemajuan Teknologi Dan Pola Kehidupan Manusia Dalam Perspektif Sosial Budaya,” No. 3, Halaman 33–47.
Reichenbach Et Al., "No. 2019; Penelitian Matriks Retina; Vol. 561, No. 3; Hal. S2–S3.
U. Kulsum, M. Jajuli, And N. Sulistiyowati, “Analisis Sentimen Aplikasi Wetv Di Google Play Store Menggunakan Algoritma Support Vector Machine,” J. Appl. Informatics Comput., Vol. 6, No. 2, Pp. 205–212, 2022, Doi: 10.30871/Jaic.V6i2.4802.
I. Zulfa And E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,” Ijccs (Indonesian J. Comput. Cybern. Syst., Vol. 11, No. 2, P. 187, 2017, Doi: 10.22146/Ijccs.24716.
S. R. Wardhana, “Analisis Sentimen Pada Opini Pengguna Aplikasi Mobile Untuk Evaluasi Faktor Kebergunaan,” Tesis, 2017.
G. P. Kawani, “Implementasi Naive Bayes,” J. Informatics, Inf. Syst. Softw. Eng. Appl., Vol. 1, No. 2, Pp. 73–81, 2019, Doi: 10.20895/Inista.V1i2.73.
F. N. Ramaulidyah, M. N. Hayati, And R. Goejantoro, “Perbandingan Metode Klasifikasi Naive Bayes Dan K-Nearest Neighbor Pada Data Status Pembayaran Pajak Pertambahan Nilai Di Kantor Pelayanan Pajak Pratama Samarinda Ulu,” Eksponensial, Vol. 12, No. 2, Pp. 161–165, 2021, [Online]. Available: Http://Jurnal.Fmipa.Unmul.Ac.Id/Index.Php/Exponensial/Article/View/809%0ahttp://Jurnal.Fmipa.Unmul.Ac.Id/Index.Php/Exponensial/Article/Download/809/346
A. Kusuma And A. Nugroho, “Analisa Sentimen Pada Twitter Terhadap Kenaikan Tarif Dasar Listrik Dengan Metode Naïve Bayes,” Vol. 15, No. 2, Pp. 137–146, 2021.
Y. Cahyono, “Analisis Sentiment Pada Sosial Media Twitter Menggunakan Naїve Bayes Classifier Dengan Feature Selection Particle Swarm Optimization Dan Term Frequency,” Pp. 14–19.
U. M. Kategori, O. Shop, And P. Instagram, “Online Shop Pada Instagram,” 2021.
N. Yustira, D. Witarsyah, And ..., “Implementasi Algoritma Naïve Bayes Classification Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu,” Eproceedings 2021, [Online]. Available: Https://Openlibrarypublications.Telkomuniversity.Ac.Id/Index.Php/Engineering/Article/View/16721%0ahttps://Openlibrarypublications.Telkomuniversity.Ac.Id/Index.Php/Engineering/Article/View/16721/16429
R. I. H. Eka Afrianti, Fthoni, “Text Classification With Naïve Bayes Classifier ( Nbc ) For Grouping Report Description And Recovery Time Duration Of Pt . Pln (Persero) Ws2jb Palembang Area,” (E-Journal), Vol. 12, No. 1, Pp. 1955–1961, 2020.
Ainurrohmah, “Akurasi Algoritma Klasifikasi Pada Software Rapidminer Dan Weka,” Prisma, Vol. 4, Pp. 493–499, 2021, [Online]. Available: Https://Journal.Unnes.Ac.Id/Sju/Index.Php/Prisma/
A. Arista, I. Yuliana, And N. Kustiningsih, “Journal Of Accounting And Financial Issue,” J. Account. Financ., Vol. 5, No. 1, Pp. 25–36, 2020.
F. S. Jumeilah, “Penerapan Support Vector Machine (Svm) Untuk Pengkategorian Penelitian,” J. Resti (Rekayasa Sist. Dan Teknol. Informasi), Vol. 1, No. 1, Pp. 19–25, 2017, Doi: 10.29207/Resti.V1i1.11.
S. Stephanie, D. S. Naga, And V. C. Mawardi, “Pendeteksian Kemiripan Teks Deskripsi Diri Pada E-Recruitment Karyawan Dengan Metode Rabin Karp Dan Jaro Winkler Distance,” J. Ilmu Komput. Dan Sist. Inf., Vol. 9, No. 1, P. 187, 2021, Doi: 10.24912/Jiksi.V9i1.11593.
B. A. B. Iii, A. Dan, And P. Sistem, “No Title,” Pp. 22–58.
Anjali, G. Jivani, And M. Anjali, “A Comparative Study Of Stemming Algorithms,” October, Vol. 2, No. 2004, Pp. 1930–1938, 2007.
N. K. Widyasanti, I. K. Gede, D. Putra, N. Kadek, And D. Rusjayanthi, “Seleksi Fitur Bobot Kata Dengan Metode Tfidf Untuk Ringkasan Bahasa Indonesia,” Vol. 6, No. 2, Pp. 119–126, 2018.
F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” Inovtek Polbeng - Seri Inform., Vol. 3, No. 1, P. 50, 2018, Doi: 10.35314/Isi.V3i1.335.
I. W. Saputro And B. W. Sari, “Uji Performa Algoritma Naïve Bayes Untuk Prediksi Masa Studi Mahasiswa,” Creat. Inf. Technol. J., Vol. 6, No. 1, P. 1, 2020, Doi: 10.24076/Citec.2019v6i1.178.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisa Sentimen Ulasan Aplikasi Wetv Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes
Pages: 874-882
Copyright (c) 2023 Novi Lestari, Elin Haerani, Reski Mai Candra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).