Analisis Pola Asosiasi Data Transaksi Penjualan Minuman Menggunakan Algoritma FP-Growth dan Eclat
Abstract
Every day transaction activities between companies and consumers continue to be carried out. This makes transaction data more and more and accumulate. This transaction data can be processed into more useful information using technology. Data mining is a technology that can work on a collection of transaction data into information that can be taken by companies as decision makers. The association rule method is used as a method to see the relationship between items in a transaction data. To analyze transaction data, researchers used the FP-Growth and Eclat algorithms. There are three stages of association in this study which are distinguished from the confidence value. The results in the first stage have a minimum confidence value of 0.4, the FP-Growth algorithm produces 41 association pattern rules, while the Eclat algorithm produces 32 association pattern rules. Then in the second stage the minimum trust value is 0.5, the FP-Growth algorithm produces 40 association pattern rules, for the Eclat algorithm it produces 32 association pattern rules. In the third stage, the minimum trust value is 0.6, the FP-Growth algorithm generates 32 association pattern rules, while the Eclat algorithm generates 30 association pattern rules. The results of the association pattern rules show that the Eclat algorithm is more efficient in determining the association pattern rules than the Fp-Growth algorithm
Downloads
References
A. R. Wibowo dan A. Jananto, “Implementasi Data Mining Metode Asosiasi Algoritma Fp-Growth Pada Perusahaan Ritel,” Jurnal Teknologi Informasi dan Komunikasi, vol. 10, no. 2, hlm. 200–212, Des 2020.
W. A. Yani dan Maruloh, “implementasi data mining dengan algoritma fp growth untuk mendukung strategi penjualan produk pada cv.sinar harapan,” Jurnal Ilmu Komputer, vol. 11, no. 2, hlm. 99–104, 2022, doi: https://doi.org/10.33060/JIK/2021/Vol11.Iss2.277.
Mustika dkk., Data Mining dan Aplikasinya, Cetakan Pertama. Bandung: Widina Bhakti Persada Bandung, 2021. [Daring]. Tersedia pada: www.penerbitwidina.com
A. P. Sandi dan V. W. Ningsih, “Implementasi Data Mining Sebagai Penentu Persediaan Produk Dengan Algoritma Fp-Growth Pada Data Penjualan Sinarmart,” JUPIKOM, vol. 1, no. 2, hlm. 111–122, 2022.
A. Ayu, A. Perdana Windarto, dan D. Suhendro, “Implementasi Data Mining Dengan Metode Fp-Growth Terhadap Data Penjualan Barang Sebagai Strategi Penjualan Pada CV. A & A Copier,” RESOLUSI: Rekayasa Teknik Informatika dan Informasi, vol. 2, no. 2, hlm. 67–75, 2021, [Daring]. Tersedia pada: https://djournals.com/resolusi
M. Akmar, T. Matulatan, dan N. Ritha, “Penerapan Algoritma Fp-Growth Untuk Menganalisa Pola Transaksi Pembelian Obat Oleh Kosumen (Studi Kasus : Apotek Anza Farma Kabupaten Anambas),” Student Online Journal Universitas Maritim Raja Ali Haji, vol. 3, no. 1, hlm. 124–138, 2022.
K. Erwansyah, “Implementasi Data Mining Untuk Menganalisa Hubungan Data Penjualan Produk Bahan Kimia Terhadap Persedian Stok Barang Menggunakan Algoritma FP (Frequent Pattern) Growth Pada PT. Grand Multi Chemicals,” J-SISKO TECH, vol. 2, no. 2, hlm. 30–40, 2019.
W. Anjar dkk., Data Mining : Algoritma dan Implementasi, Cetakan 1. Medan: Yayasan Kita Menulis, 2020. Diakses: 1 Juni 2023. [Daring]. Tersedia pada: http://eprints.binadarma.ac.id/13350/1/FullBook%20Data%20Mining_compressed.pdf
R. Haristyarini dan W. Yustanti, “Penerapan Metode Market Basket Analysis dengan Algoritma Eclat dan Prediksi dengan Artificial Neural Network pada Data Transaksi Penjualan,” JEISBI, vol. 2, no. 3, hlm. 21–29, 2021.
W. N. Setyo dan S. Wardhana, “Implementasi Data Mining Pada Penjualan Produk Di Cv Cahaya Setya Menggunakan Algoritma Fp-Growth,” Jurnal Petir, vol. 12, no. 1, hlm. 54–63, 2019.
Sudarsono, A. Wijaya, dan Andri, “Perbandingan Algoritma Eclat Dan Fp-Growth Pada Penjualan Barang (Studi Kasus: Minimarket 212 Mart Veteran Utama),” Bina Darma Conference on Computer Science 2019, vol. 1, no. 1, hlm. 208–2017, Jan 2019.
A. K. Siregar, B. A. Kusuma, A. P. Kuncoro, dan Suliswaningsih, “Perbandingan Algoritme FP-Growth dan Eclat untuk Analisis Pola Pembelian Konsumen pada Toko ‘X,’” CITISEE Conference Proceeding, hlm. 125–128, 2018.
K. N. Wijaya, R. Firsandaya Malik, dan S. Nurmaini, “Analisa Pola Frekuensi Keranjang Belanja Dengan Perbandingan Algoritma Fp-Growth (Frequent Pattern Growth) Dan Eclat Pada Minimarket,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 2, hlm. 364–373, Agu 2020, [Daring]. Tersedia pada: http://jurnal.mdp.ac.id
M. Danny dan S. Umam, “Penerapan Data Mining Menggunakan Algoritma Fp-Growth Untuk Menganalisa Pola Penjualan Obat (Studi Kasus: Klinik Annisa),” Prosiding SAINTEK Universitas Pelita Bangsa, vol. 1, no. 1, hlm. 159–164, 2022.
A. Fatkhul Huda dan A. Jananto, “Algoritma Eclat Sebagai Alat Bantu Pengelolaan Persediaan Barang,” Dinamika Informatika, vol. 10, no. 2, hlm. 74–79, Okt 2018.
A. Dennis, A. B. Donny, A. Lia, dan W. S. W. I, Belajar Data Mining dengan RapidMiner. 2013. Diakses: 1 Juni 2023. [Daring]. Tersedia pada: https://repository.dinus.ac.id/docs/ajar/Belajar_Data_Mining_dengan_RapidMiner.pdf
Firmansyah dan A. Yulianto, “Market Basket Analysis for Books Sales Promotion using FP Growth Algorithm, Case Study : Gramedia Matraman Jakarta,” Journal Of Informatics And Telecommunication Engineering, vol. 4, no. 2, hlm. 383–392, Jan 2021, doi: 10.31289/jite.v4i2.4539.
A. Ardianto dan D. Fitrianah, “Penerapan Algoritma FP-Growth Rekomendasi Trend Penjualan ATK Pada CV. Fajar Sukses Abadi,” Jurnal Telekomunikasi dan Komputer, vol. 9, no. 1, hlm. 49–60, Apr 2019, doi: 10.22441/incomtech.v9i1.3263.
F. Zia Ghassani, A. Jamaludin, dan A. Susilo Yuda Irawan, “Market Basket Analysis Menggunakan Algoritma Fp-Growth Dalam Menentukan Cross-Selling,” hlm. 86, doi: https://doi.org/10.33795/jip.v7i4.508.
F. Nirma Sanny Damanik, A. Sagita, Harianto, dan A. Syaputra, “Aplikasi Pengenalan Pola Pembelian Konsumen Menggunakan Kombinasi Algoritma FP-Growth Dan ECLAT Method (FEM),” SIFO Mikroskil, vol. 19, no. 2, hlm. 1–12, Okt 2018.
L. Sry Rahayu Situmorang, M. Sri Wahyuni, dan M. Syaifuddin, “Implementasi Metode Fp-Growth Dalam Menganalisa Pola Penjualan Obat Pada Apotek,” Jurnal Sistem Informasi TGD, vol. 1, no. 4, hlm. 362–373, Jul 2022, [Daring]. Tersedia pada: https://ojs.trigunadharma.ac.id/index.php/jsi
B. Anugrah dan Andri, “Penerapan Data Mining Menggunakan Algoritma Fp-Growth Pada Data Transaksi Penjualan Di Indovaping Palembang,” Bina Darma Conference on Computer Science, hlm. 190–197.
U. Soleha, M. Widyastuti, L. Khairani, R. Maghfirah, dan A. Fauzan, “Penerapan Algoritma Fp-Growth Dalam Penentuan Pola Pembelian Konsumen 212 Mart Pekanbaru,” IJIRSE: Indonesian Journal of Informatic Research and Software Engineering, vol. 2, no. 2, hlm. 93–99, Sep 2022.
I. Fahrur Rozi, Y. Watequlis Syaifudin, dan N. Al Mufidah, “Analisa Frequent Pattern Pada Data Penjualan Menggunakan Algoritma Eclat Untuk Menentukan Strategi Penjualan,” Jurnal Informatika Polinema, vol. 5, no. 3, hlm. 136–140, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Pola Asosiasi Data Transaksi Penjualan Minuman Menggunakan Algoritma FP-Growth dan Eclat
Pages: 126−133
Copyright (c) 2023 Risna Lailatun Najmi, Muhammad Irsyad, Fitri Insani, Alwis Nazir, Pizaini .
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).