Implementasi Metode Learning Vector Quantization (LVQ) Untuk Klasifikasi Keluarga Beresiko Stunting


  • Abdul Aziz Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fitri Insani * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Jasril Jasril Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia
  • (*) Corresponding Author
Keywords: Stunting; LVQ; Classification; Families at Risk of Stunting; Nutrition

Abstract

Stunting is a condition where a child's height is too short compared to children of the same age. This condition affects the health of toddlers in the short and long term, such as suboptimal body posture in adulthood, decreased reproductive health, and decreased learning capacity, resulting in suboptimal performance in school. One of the causes of stunting is a lack of nutrition, basic health facilities, and poor parenting practices. However, the current data collection and classification of families at risk of stunting still use Microsoft Excel, which is ineffective in processing large data. Therefore, the LVQ method, which is an improvement of the Vector Quantization method, is used to accelerate the classification process. In this study, 5 parameters were tested, and the optimal result was achieved by using 7 input neurons, Chebychev distance as the distance measure, a learning rate of 0.1, 7 epochs, and 30% of training data. With these parameters, an accuracy of 99.38% was obtained. Based on these results, the LVQ method can help improve accuracy in classifying families at risk of stunting

Downloads

Download data is not yet available.

References

K. Rahmadhita, “Permasalahan Stunting dan Pencegahannya,” J. Ilm. Kesehat. Sandi Husada, vol. 11, no. 1, pp. 225–229, 2020, doi: 10.35816/jiskh.v11i1.253.

D. Millati, Nisrina Anis, Cegah Stunting Sebelum Genting : Peran Remaja Dalam Pencegahan Stunting. Jakarta: KPG (Kepustakaan Populer Gramedia ), 2021.

I. A. D. Wira, “Faktor-Faktor yang Mempengaruhi Stunting pada Balita,” PRAMANA J. Has. Penelit., vol. 2, no. 2, pp. 213–219, 2022, [Online]. Available: http://stahnmpukuturan.ac.id/jurnal/index.php/pramana/article/view/2723.

Kementrian Kesehatan Republik Indonesia, Buku Saku Hasil Studi Status Gizi Indonesia ( SSGI) Tingkat Nasional, Provinsi, dan Kabupaten/Kota Tahun 2021. 2021.

S. Mustika and C. Khairunnisa, “Prevalensi Stunting pada Siswa SMP Negeri 7 Lhokseumawe Abstrak Pendahuluan malnutrisi zat gizi kronis atau penyakit infeksi kronis maupun berulang yang ditunjukkan Republik Indonesia ( Kemenkes RI ) hanya terbatas pada kelompok usia Balita . Penelitian,” Galen. J. Kedokt. dan Kesehat. Mhs. Malikussaleh, vol. 1, no. 4, 2022.

T. A. Rofiah, N. M. Syaroh, M. Safitri, F. V. Satriaji4, and T. M. Fahrudin, “Monitoring pada Keluarga dengan Anak Berisiko Stunting di Desa Candiharjo Kecamatan Ngoro,” KARYA UNGGUL J. Pengabdi. Kpd. Masy., vol. 1, pp. 43–52, 2022.

Badan Kependudukan Dan Keluaga Berencana Nasional, “Peraturan Badan Kependudukan Dan Keluaga Berencana Nasional RI No. 12 Tahun 2021 Tentang Percepatan Penurunan Angka Stunting Indonesia Tahun 2021-2024,” vol. 2, no. 1, pp. 1–5, 2021.

“BKKBN Riau giatkan ‘celengan’ masyarakat cegah stunting - ANTARA News.” https://www.antaranews.com/berita/3204525/bkkbn-riau-giatkan-celengan-masyarakat-cegah-stunting (accessed Dec. 04, 2022).

“Geliat Kampung KB Tuah Madani Melalui Inovasi “Cemara Stunting" .” https://rri.co.id/pekanbaru/kesehatan/70434/geliat-kampung-kb-tuah-madani-melalui-inovasi-%22cemara-stunting%22 (accessed Dec. 04, 2022).

M. S. A. I Gusti Ayu Agung Diatri Indradewi, “Jaringan Syaraf Tiruan LVQ Berbasis Parameter HSV dalam Penentuan Uang Jaringan Syaraf Tiruan LVQ Berbasis Parameter HSV dalam Penentuan Uang Rupiah Palsu,” vol. 13, no. January 2019, pp. 47–52, 2020.

Eko Prasetyo, Data mining konsep dan aplikasi menggunakan MATLAB, 1st ed. CV Andi Offset, 2012.

M. R. Rahimi and H. Hartatik, “Penerapan Algoritma Learning Vector Quantization dalam Pengklasifikasian Tingkat Pencemaran Air Sungai,” Semnasteknomedia Online, vol. 4, no. 1, pp. 4-9–1, Feb. 2016, Accessed: Dec. 13, 2022. [Online]. Available: https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1180.

R. Tantiati, M. T. Furqon, and C. Dewi, “Implementasi Metode Learning Vector Quantization (LVQ) untuk Klasifikasi Persalinan,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 9701–9707, 2019.

E. Setyowati and S. Mariani, “Penerapan Jaringan Syaraf Tiruan dengan Metode Learning Vector Quantization ( LVQ ) untuk Klasifikasi Penyakit Infeksi Saluran Pernapasan Akut ( ISPA ),” Prism. Pros. Semin. Nas. Mat., vol. 4, pp. 514–523, 2021.

N. ,H. . M. Iin Sulistya, “Prediksi Status Gizi Balita Menggunakan Algoritma Learning Vector Quantization (Lvq) (Studi Kasus: Posyandu Di Pengungsian Kelurahan Petobo),” Universitas Taduloko, Palu, 2020.

R. Arifando, N. Hidayat, and A. A. Soebroto, “Klasifikasi Calon Penerima Bantuan Keluarga Miskin Menggunakan Metode Learning Vector Quantization (LVQ) (Studi Kasus: Daerah Kecamatan Mlandingan, Situbondo),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 6, pp. 2173–2181, 2018, [Online]. Available: http://j-ptiik.ub.ac.id.

V. C. Pamungkas, L. Muflikhah, and R. C. Wihandika, “Klasifikasi Penerimaan Program Keluarga Harapan ( PKH ) Menggunakan Metode Learning Vector Quantization ( Studi Kasus Desa Kedungjati ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2659–2666, 2019.

R. Syahputra and W. Riansah, “Prediksi Penerima Bantuan Pangan Non-Tunai Dengan Metode Learning Vector Quantization Pada Desa Tanjung Selamat,” J. Educ. …, vol. 9, no. 4, pp. 96–100, 2021, [Online]. Available: http://journal.ipts.ac.id/index.php/ED/article/view/3042%0Ahttp://journal.ipts.ac.id/index.php/ED/article/download/3042/1991.

Mayang Hermeiliza Eka Putri, “Perbandingan Metode Learning Vector Quantization Dan Self Organizing Map Pada Klasifikasi Data Akreditasi,” Universitas Sriwijaya, Palembang, 2020.

E. Tita Tosida, F. Delli Wihartiko, and I. Lumesa, “Learning Vector Quantization Implementation to Predict the Provision of Assistance for Indonesian Telematics Services SMES,” Int. J. Eng. Technol., vol. 7, no. 3.20, p. 381, 2018, doi: 10.14419/ijet.v7i3.20.20576.

H. Harliana and S. Kirono, “Penerapan Learning Vector Quantization Dalam Memprediksi Jumlah Rumah Tangga Miskin,” J. Sains dan Inform., vol. 5, no. 2, pp. 118–127, 2019, doi: 10.34128/jsi.v5i2.192.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Metode Learning Vector Quantization (LVQ) Untuk Klasifikasi Keluarga Beresiko Stunting

Dimensions Badge
Article History
Submitted: 2023-05-19
Published: 2023-06-27
Abstract View: 23 times
PDF Download: 18 times
How to Cite
Aziz, A., Insani, F., Jasril, J., & Syafria, F. (2023). Implementasi Metode Learning Vector Quantization (LVQ) Untuk Klasifikasi Keluarga Beresiko Stunting. Building of Informatics, Technology and Science (BITS), 5(1), 12−20. https://doi.org/10.47065/bits.v5i1.3478
Issue
Section
Articles

Most read articles by the same author(s)