Penerapan Deep Learning Menggunakan Gated Recurrent Unit Untuk Memprediksi Harga Minyak Mentah Dunia
Abstract
Crude oil is a much-needed energy for the whole world. Each country is inseparable from the use of crude oil for use in various sectors, such as transportation, so that the price of world crude oil is the most important variable for the world. Fluctuations in oil prices will cause various problems, such as inflation, changes in market prices, and others. Therefore, the prediction of world crude oil prices is very important as a consideration for decision making. This study implements deep learning using the Gated Recurrent unit model. The data used is the price of Brent crude oil with a total of 5834 data, starting from January 4, 2000 to December 19, 2022. The parameters used are the number of GRU units, batch size, and lookback. The best model produced in this study is the GRU model with hyperparameters consisting of 30 lookbacks, 50 GRU units, and 256 batch sizes with the lowest MAPE value among the other models, which is 2.25%. The MAPE value states that predictions using the GRU model are said to be very good at predicting world crude oil prices
Downloads
References
A. Daneshvar, M. Ebrahimi, F. Salahi, M. Rahmaty, and M. Homayounfar, “Brent Crude Oil Price Forecast Utilizing Deep Neural Network Architectures,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/6140796.
K. Czech and I. Niftiyev, “The Impact of Oil Price Shocks on Oil-Dependent Countries’ Currencies: The Case of Azerbaijan and Kazakhstan,” Journal of Risk and Financial Management, vol. 14, no. 9, p. 431, Sep. 2021, doi: 10.3390/jrfm14090431.
M. Hussein and Y. Azhar, “Prediksi Harga Minyak Dunia Dengan Metode Deep Learning,” Fountain of Informatics Journal, vol. 6, no. 1, pp. 2548–5113, 2021, doi: 10.21111/fij.v6i1.4446.
J. Veri, S. Surmayanti, and G. Guslendra, “Prediksi Harga Minyak Mentah Menggunakan Jaringan Syaraf Tiruan,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 3, pp. 503–512, Jul. 2022, doi: 10.30812/matrik.v21i3.1382.
C. Deng, L. Ma, and T. Zeng, “Crude oil price forecast based on deep transfer learning: Shanghai crude oil as an example,” Sustainability (Switzerland), vol. 13, no. 24, Dec. 2021, doi: 10.3390/su132413770.
M. Hasan, M. Z. Abedin, peta hajek, N. Sultan, and B. M. Lucey, “A Blending Ensemble Learning Model for Crude Oil Price Prediction,” SSRN Electronic Journal, 2022, doi: 10.2139/ssrn.4153206.
N. Gupta and S. Nigam, “Crude Oil Price Prediction using Artificial Neural Network,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 642–647. doi: 10.1016/j.procs.2020.03.136.
Y. Zhao, W. Zhang, X. Gong, and C. Wang, “A novel method for online real-time forecasting of crude oil price,” Appl Energy, vol. 303, Dec. 2021, doi: 10.1016/j.apenergy.2021.117588.
Y. Arifin, “Pengaruh Harga Minyak Dunia, Nilai Tukar dan Inflasi terhadap Pertumbuhan Ekonomi Indonesia,” Economics Development Analysis Journal, vol. 5, no. 4, pp. 474–483, Mar. 2018, doi: 10.15294/edaj.v5i4.22184.
S. D. Purnomo, I. Istiqomah, and L. S. Badriah, “PENGARUH HARGA MINYAK DUNIA TERHADAP PERTUMBUHAN EKONOMI, INFLASI, DAN PENGANGGURAN DI INDONESIA,” Jurnal PROFIT Kajian Pendidikan Ekonomi dan Ilmu Ekonomi, vol. 7, no. 1, pp. 13–24, Apr. 2020, doi: 10.36706/jp.v7i1.11025.
Y. Mailida, Z. Azhar, and M. R. Adry, “Analisis Kausalitas Shock Harga Minyak Dunia, Pengeluaran Dan Penerimaan Pemerintah Di Indonesia,” Jurnal Kajian Ekonomi dan Pembangunan, vol. 1, no. 1, p. 153, Mar. 2019, doi: 10.24036/jkep.v1i1.5361.
Y. Zhang, F. Ma, and Y. Wang, “Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?,” J Empir Finance, vol. 54, pp. 97–117, Dec. 2019, doi: 10.1016/j.jempfin.2019.08.007.
U. N. Almaya, W. H. Rianto, and S. Hadi, “Pengaruh Harga Minyak Dunia, Inflasi, Konsumsi Rumah Tangga terhadap Pertumbuhan Ekonomi Indonesia,” Jurnal Ilmu Ekonomi JIE, vol. 5, no. 2, pp. 262–278, Jul. 2021, doi: 10.22219/jie.v5i2.14101.
A. M. Nyangarika and B. J. Tang, “Oil Price Factors: Forecasting on the Base of Modified ARIMA Model,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Nov. 2018. doi: 10.1088/1755-1315/192/1/012058.
D. Kevin Natanael and D. Safitri, “PREDIKSI HARGA MINYAK DUNIA DENGAN METODE AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA),” 2018. doi: https://doi.org/10.26714/jsunimus.6.1.2018.%25p
D. Rakhmawati et al., “Konferensi Nasional Sistem Informasi 2018 STMIK Atma Luhur Pangkalpinang,” 2018.
V. P. Ariyanti and Tristyanti Yusnitasari, “Comparison of ARIMA and SARIMA for Forecasting Crude Oil Prices,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 2, pp. 405–413, Mar. 2023, doi: 10.29207/resti.v7i2.4895.
J. S. Keerthan, Y. Nagasai, and S. Shaik, “Machine Learning Algorithms for Oil Price Prediction,” 2019. [Online]. Available: www.indexwiz.com
C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, vol. 31, no. 3, pp. 685–695, 2021. doi:10.1007/s12525-021-00475-2
U. I. Arfianti, D. C. R. Novitasari, N. Widodo, Moh. Hafiyusholeh, and W. D. Utami, “Sunspot Number Prediction Using Gated Recurrent Unit (GRU) Algorithm,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 2, p. 141, Apr. 2021, doi: 10.22146/ijccs.63676.
S. Samsudin, A. M. Harahap, and S. Fitrie, “Implementasi Gated Recurrent Unit (Gru) Untuk Prediksi Harga Saham Bank Konvensional Di Indonesia,” JISTech (Journal of Islamic Science and Technology), vol. 6, no. 2, Dec. 2021, doi: 10.30829/jistech.v6i2.11058.
A. Lawi, H. Mesra, and S. Amir, “Implementation of Long Short-Term Memory and Gated Recurrent Units on grouped time-series data to predict stock prices accurately,” J Big Data, vol. 9, no. 1, Dec. 2022, doi: 10.1186/s40537-022-00597-0.
A. Ilham Caniago, W. Kaswidjanti, and U. Pembangunan Nasional Veteran Yogyakarta, “Recurrent Neural Network With Gate Recurrent Unit For Stock Price Prediction Recurrent Neural Network Dengan Gate Recurrent Unit Untuk Prediksi Harga Saham,” Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 3, pp. 345–360, 2021, doi: 10.31515/telematika.v18i3.6650.
Z. Zainuddin, E. A. P. Akhir, and M. H. Hasan, “Predicting machine failure using recurrent neural network-gated recurrent unit (RNN-GRU) through time series data,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 2, pp. 870–878, 2021, doi: 10.11591/eei.v10i2.2036.
I. Oxaichiko Arissinta, I. Dwi Sulistiyawati, and D. Kurnianto Iqbal Kharisudin, “Pemodelan Time Series untuk Peramalan Web Traffic Menggunakan Algoritma Arima,” Prosiding Seminar Nasional Matematika, vol. 5, pp. 693–700, 2022, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
L. Xiedong, M. Dongliang, Z. Songlin, and W. Deyu, “GRU neural network-based method for box girder crack damage detection,” Chinese Journal of Ship Research, vol. 17, no. 4, pp. 194–203, 2022. doi:https://doi.org/10.19693/j.issn.1673-3185.02415
H. Hewamalage, K. Ackermann, and C. Bergmeir, “Forecast evaluation for data scientists: common pitfalls and best practices,” Data Mining and Knowledge Discovery, vol. 37, no. 2, pp. 788–832, Dec. 2022, doi: 10.1007/s10618-022-00894-5.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Deep Learning Menggunakan Gated Recurrent Unit Untuk Memprediksi Harga Minyak Mentah Dunia
Pages: 86−94
Copyright (c) 2023 Nugroho Wahyu Saputra, Fitri Insani, Surya Agustian, Suwanto Sanjaya
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).