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g\bstra%t—One approach to handling large of data dimensions is feature selection. Effective feature selection techniques produce
“he essential features and can improve classification algorithms. The accuracy performance results can measure the accuracy of the
metho8Fused in the classification process. This research uses the Learning Vector Quantization (LVQ) 1 method combined with
Gain Iﬁtio feature selection. The data used is male and female skull bone measurement data totaling 2524. The highest accuracy
resultscare obtained by LVVQ 1, which uses a Gain Ratio with a threshold of 0.01 with a learning rate = 0.1, which is 92.01%, and
the default threshold weka(-1.7976931348623157E308) with a learning rate = 0.1, which is 92.19%. In comparison, previous
research that did not use gain ratio or that did not use GR only had the best results of 91.39% with a learning rate = 0.1, 0.4, 0.7,
0.9. TI&S shows that LVQ 1 using the Gain Ratio can be recommended to improve the performance of the Skull dataset compared
to LVQ 1 without Gain Ratio.

Keywords: Accuracy; Gain Ratio; LVQ 1; Performance; Skull

1. INTRODUCTION

Forensic anthropology is reconstructing a deceased individual's biological profile, i.e., estimating sex, age at death,
ancestry, and stature based on skeletal remains[1]. Forensic experts often use bones to determine a person's identity,
such as race, sex, estimated age, estimated height, estimated cause of death, and estimated time of death in forensic
cases, such as cases of bodies buried with only bone remaining, mutilation cases, and body parts due to natural
disaster[2].

The most critical component of forensic anthropology of an individual is sex determination, which is the first
step iRfidentifying skeletal remains[3]. Knowledge of the sex of an unknown set of remains is essential for making
more dccurate age estimates[4]. The skull can be one of the skeleton parts used to determine sex and is the best bone
after the pelvic bone[5].

ZThe most common methods used to explore and classify sex are Discriminant Function Analysis (DFA),
Logis@c Regression (LR), and Support Vector Machine (SVM). Discriminant Function Analysis (DFA) is also an
essenttal statistical method for determining data accuracy and is often used in forensic anthropology analysis[6]. Sex
classifieation is also the most commonly used exploratory task in machine learning (ML), especially using Support
VectorMachine (SVM) and artificial neural network (ANN) algorithms([7].

<One of the techniques in sex classification is by utilizing one of the Artificial Neural Networks (ANN), namely
Iearnlgg vector quantization (LVQ)[8]. Learning vector quantization or LVQ, is one part of the neural network that
performs supervised learning. LVQ is one of the supervised ANN classification algorithms based on the Kohonen
mode“LVQ is also called a supervised version of Self Organizing Map networks (SOM) which is considered an

= . . o ) .
unsupesvised learning algorithm, LVQ uses a vector quantization architecture along with labeled vectors and
super\géed training[9]. In its development, the LVQ method is divided into several LVQ: LVQ 1, LVQ 2, LVQ 2.1,
and LYQ 3[10].

gln the previous research (Darmila et al., 2022), the implementation of LVQ 1, LVQ 2, and LVVQ 3 methods on
sex classification based on skull measurements got the best accuracy in LVQ 1 method with accuracy reaching 91.39%
with ‘Igarning rate (o) 0.1, 0.4, 0.7, 0.9, subtractor alfa value 0.01, min_alfa.0.01. Therefore, the previous research
becanie. a benchmark to compare the accuracy results in this research with the same classification method, namely
LVvQ [[11].

~In addition to using LVQ 1 as a classification method, this research also uses feature selection, which is a
metho‘ﬂ used to reduce the impact of dimensionality on data sets by finding feature subsets that efficiently define data
and sé&‘ectlng essential and relevant features for mining tasks from input data and removing redundant and irrelevant
featur€s and helps detect a good feature subset that is suitable for a given problem[12]. Feature selection aims to build
a newflataset from the merging attributes of the feature selection technique[13]. One of the feature selection methods
is Gain Ratio, Gain ratio (GR) is a modification of Information Gain[14], [15].

In other research (Pasha & Mohamed, 2022; Safii et al., 2021), it has been stated that the gain ratio feature
selection technique is used to rank the features from highest to lowest, which measures the performance based on the
average imerit of each feature and allocates a rank, where the high-ranked features are considered the most essential
feature[16]. Feature selection gain ratio is used to reduce the dimensionality of the collected data, effectively
shortening the process's time [17]. Selected features on Gain Ratio can affect accuracy performance[18].Therefore,
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ned using and not using Gain Ratio (GR) feature selection.
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2. RESEARCH METHODOLOGY
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a. Thefirst workflow from the dataset then enters the data preprocessing stage then enters the Gain Ratio feature

sefection stage with two different thresholds, then from each threshold will select features then from the selected

data, features will be distributed into sampling data, then classified with LVQ1 and evaluated.

The second workflow from the dataset then enters the preprocessing stage then the data is distributed into sampling

fram each sampling, the data enters the Gain Ratio feature selection stage with two different thresholds, then from

each threshold will select features then from the selected data features will be classified with LVQ1 and evaluated.
he two workflows will get the accuracy value and then compare their performance. Based on the research

Figure 1. Research workflow

=Explanation of the research workflow in Figure 1:

=
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workfj;_@w in Figure 1, the research stages can be described as follows:

a.

Data Collection

=In this research, the skull dataset is sourced from the William W. Howells dataset, and secondary data from the
Webs@ https://web.utk.edu/~auerbach/HOWL.htm. Skull bones can determine the sex of humans. In a dataset of 2524

(b) Second workflow

consisting of 1368 male skull data and 1156 female skull data, there are 82 skull bone measurement features.

;': Table 1. Dataset

= Sex ASB BPL NPH NLH JUB PAS OCC OCS OCF FOL

5' M 112 96 66 50 118 26 98 30 51 34

= M 113 108 64 48 118 24 93 27 39 34

% M 112 102 67 53 112 23 88 30 45 41

= M 113 95 76 53 114 24 94 34 50 38
M 111 90 67 51 115 26 94 32 40 34
F 106 103 68 48 110 106 103 68 48 110
F 101 90 65 48 110 101 90 65 48 110
F 108 96 59 45 110 108 96 59 45 110
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T © F ... 106 86 57 45 106 ... 106 86 57 45 106
a = F ... 107 95 63 47 113 ... 107 95 63 47 113
2 B
& =Table 1 shows the skull bone measurement dataset and Table 2 below offers 12 features out of 82 skull bone
Feasupement features with their respective codes.
=
g E Table 2. Skull bone measurement features
-
“éCodg Features of Skull Bone Measurements  Code Features of Skull Bone Measurements
2 ASB Biasterionic breath PAS Bregma-lamda subtense(parietal subtense)
g BPL= Basion-prosthion lengthz occC Lamnda-opisthion chord (Occipital chord)
& NPH= Nasion-prosthion height 0OCs Lamnda-opisthion Subtense (Occipital subtense)
a NL Nasal height OCF Occipital-frontal circumference
g JU Bujugal breath FOL Foramen magnum length
NL@ Nasal breadth OBH Orbit Height, left
b. Davéa Preprocessing
1. Daéta Cleaning

Refoved some features on this dataset such as Popnum and Population. These features are removed because they
comtain population names and population numbering descriptions.

2. Data Transformation
Data transformation that converts categorical data to numerical data[19].

3. Data Normalization
Data normalization can be done with several varied approaches. In this research applying the Min-Max
normalization method. Normalization is done by mapping into numbers between 0 and 1 [11], [20].

v = %(new_max,; — new_max,) + new_min, )
c. Feature Selection Gain Ratio
Normalization Feature Selection can help to find the ranking results of each attribute, useful for the process
of creating learning models and improving their accuracy [21]. In this research we use Gain Ratio (GR) feature
selection, a modification of Information Gain that reduces bias on entropy values. The Gain Ratio determination is
as follgws[22], [23]:

~Calculate the Entropy value for each attribute

CEntropy (S) = i, —pi * log,pi )
w

Calculate the information gain value for each attribute
8 .
alnformationGain(S,A) = Entropy(S) — ?:1% x Entropy(Si) 3)
=

Calcufate the Split Information value for each attribute
<

® i .
aSplitinfo (D) = — %55 xlog2 )

=k
Calcutate the Gain Ratio value for each attribute
o

% mRatio(A) = Gain(A) 5)

o atnratto - Splitinfo(A)

~Researchers used the WEKA tool in this research to perform GR feature selection[24]. the output of WEKA is
used as the basis for feature ranking[25]. Furthermore, there are 2 thresholds used, namely the default threshold of the
Weka%bplication and with a threshold of 0.01[26]. The Threshold selected in the Gain Ratio will select highly relevant
characteristics to the data class.
d. Da;:arDistribuition

wThis step will be divided into 9 samples from each data class. This step will be divided into 9 samples from
each data class . The distribution of data used during testing, sampling data after using Gain Ratio and not using Gain
Ratilrahis dataset with both classes, namely male skull bones and female skull bones divided into each sample (SI -
SIX)Z

]
e. Classification with LVQ 1
In this step, the required data is modeled according to the steps of LVQ algorithm 1. In the classification
process, training and testing processes are carried out using data that has known object classes. LVQ 1 algorithm is
the initial basis of the LVVQ algorithm, where only the reference vector that is closest to the class distribution will be
refreshed.
In learning on LVVQ 1 the parameters used are[27]:
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©
Determine the value of the X vector, the target value (T), the weight vector value (Wj), the class value (Cj), the
lea¥ning rate value (o) with the conditions 0 < a < 1, the value of reducing or decreasing the learning rate (o),
ana_the minimum learning rate value (min o).
Update the weight value if it matches the condition:
if m—Cj, then it is solved by Eq.

q}:lume 5,No 1, June 2023 Page: 211-218

—Wij(new) = Wj(old) + a[Xi — Wj(old)] (6)
if T#Cj, then it is solved by Eq.
Wj(new) = Wj(old) — a[Xi— Wj(old)] ©)

Pegformance Analysis and Evaluation
¢ his stage aims to evaluate the accuracy performance using LVQ1 by doing Gain Ratio and without doing
Gain Ratio.

Buepun-buepun !ﬁunpu_mq eydigyey

3. RESULT AND DISCUSSION

Iy XS

3.1 D;:cita Preprocessing

a. Data cleaning
Only removed 3 attributes from the data set, namely population names and population numbering
descriptions.

Table 3. Before Cleaning Table 4. After Celaning
Sex PopNum Population ... ASB BPL Sex ... ASB BPL
M 1 NORSE ... 112 96 M 112 96
M 1 NORSE ... 113 108 M ... 113 108
M 1 NORSE ... 112 102 M ... 112 102
F 1 NORSE ... 106 103 F 106 103
F 1 NORSE ... 101 90 F 101 90
® F 1 NORSE ... 108 96 I 108 96
b. D%ﬂ Transformation
;This step changes the sex feature of male to 1 and female to 0.
95'7 Table 5. Data Transformation
o Sex ... ASB BPL
= 1 112 96
2, 1 113 108
o 1 112 102
- 0 106 103
- 0 101 90
= 0 108 96
=

c. Data normalization
SData normalization in this research is done before the data enters the selection feature stage and is also done
in theg\/eka application.

3.2 Ifgature Selection Gain Ratio

The fdllowing is the total features selected from both thresholds from the first workflow in Table 6:

(-1.7976931348623157E308)

Table 6 shows the total of features selected according to the threshold that has been determined. The features
selected at the 0.01 threshold are 53 features and 81 features for the default threshold. Furthermore, the selected
features from each threshold will give birth to a new dataset according to the total of features, which will then be
distributed into 9 sampling data as in Table 8.

The following features are selected from the 2 thresholds of the second workflow in Table 7.

; Table 6. Total selected features in the first workflow
;_ Threshold Total

=2 0.01 53

= Default Weka 81

x

e
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F © Table 7. Total selected features in the second workflow

= p—

g _L Total Total Total selection of
sThreshoId Sample  Selected Threshold Sample  Selected

= 0 Features Features the same feature
3 001 I 37 Default weka I 82 37

5 o I 47 (- I 82 47

% 3 1 58 1.7976931348623157E308) 1l 82 58

= = v 67 v 82 67

2 = \Y 67 \Y 82 67

T C Y 59 \Y 82 59

2 = VI 57 VIl 82 57

B < Vil 61 Vil 82 61

" @ IX 59 IX 82 59

Zin Table 7, the total features by the 0.01 threshold obtained for each sample vary, some are the same and some
are different, but the default threshold in Weka gets the same total features in each sample, because no features are
selecté_q with this default threshold. The sampling distribution process in the flow is described in Table 8.

3.3 E@ta Distribution

In the sample I as much as 90% male 10% female. In sample 11 as much as 10% male 90% female, in sample 111 as
much as 80% male 20% female, in sample 1V as much as 20% male 80% female, in sample V as much as 70% male
30% female, in sample VI as much as 30% male 70% female, in sample VIl as much as 60% male 40% female, in
sample VIII as much as 40% male 60% female, in sample XI as much as 50% male 50% female.

The following Table contains the amount of data based on data distribution:

Table 8. Data Distribution

Sample
[ 1 i 1v. v VL VI VIl X
male 1231 137 1094 274 958 410 821 547 684
Female 116 1040 231 925 347 809 462 694 578

%)
3.4 qpssification with LVQ1

WI||I¢’:fﬁ’] s dataset was divided into training and testing data and then divided into 9 samples. The data is tested using
k- folc@ross -validation testing using the learning rate (o) value parameters 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.4, 0.7,
and 0,3 minimum o 0.01, subtractor a 0.01, and the epoch value used is 1000.

Class

3.5 Performance Analysis and Evaluation of LVQ 1

a. Presq/ious Research Results (LVQ 1 without Gain Ratio)
=In LVQ 1 without Gain ratio get the highest accuracy achievement in sampling | which is 91.39% with the
value 8f o= 0.1, 0.4, 0.7, 0.9.

ACCURACYOFLVQ1WITHOUT GAIN RATIO

100.00%
80.00%
60.00%

40.00%

ACCURACY

20.00%

0.00%
1 2 3 4 5 6 7 8 9
Without GR 91.39%88.45%83.40%78.48%73.41% 76.19%71.59% 72.72%70.63%

nery wisey jiaedg uejpng jo £31s

Figure 2. Accurasy Result of LVQ 1 without Gain Ratio

In Figure 2, shows the best accuracy results of the 9 samples tested with LVQ method 1. In sampling II, I1I,
and IV get the best accuracy at a = 0.1. In sampling V, the best accuracy is produced at a = 0.4, 0.7, 0.9. While in
sampling VI, VII, VIII, IX achieved the best accuracy at o. = 0.01.

b. Best Accuracy Results of LVQ 1 with Gain Ratio with Threshold 0.01 and without Gain Ratio
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@I he best accuracy results obtained by LVVQ1 using Gain Ratio with threshold 0.01 is with the second workflow.
he foHowing results compare LVQ 1 accuracy using a feature selection Gain Ratio with threshold 0.01 and those
at dmnot use feature selection in previous research.

In Figure 3, the best accuracy comparison results are obtained in sample II using GR with a value of a = 0.1,
s*vhlch-ls 92.01%, while in previous research or without GR only has the best result of 88.45% at o =0.1. In samplel
ghe best accuracy results using GR was obtained with a value of o = 0.4, 0.7, and 0.9, while in previous research, the
Dest r&ults in sample I were obtained with a value of o.= 0.1, 0.4, 0.7, 0.9. In sample III, the accuracy results using
&R weke obtained at a value of a = 0.4, while in previous research the best accuracy results were obtained at a value
?@f o =90.1. In sample IV, the accuracy results using GR and the accuracy results in the previous research, the best
&ccuraty results were both obtained at a value of a = 0.1. In sample V, the best accuracy results using GR were
@btairfed at a value of o= 0.001, while in previous research, the best accuracy results were obtained at a value of o=

4,02 0.9. In sample VI the best accuracy results using GR were obtained at a value of a = 0.001, while in previous
@eseargh, the best accuracy results were obtained at a value of a = 0.01. In samples VII, VIII, IX the best accuracy
resultsusing GR and the best accuracy results in previous research were both obtained at a value of o= 0.01.

EeH

UuiQ e}

w
-~
Q) ACCURACY COMPARISON RESULTS
5 ) 100.00%
s ——
S
4} 80.00% — S|
[ - -1 ~ ‘_—-—q
E 60.00%
=
1 40.00%
<
20.00%
0.00%
I I 11 v v VI VII VIII X
=GR 0.01 91.39% 92.01% 84.01% 85.57% 81.22% 69.43% 78.57%72.69% 74.87%

~— Without GR 91.39% 88.45%83.40%78.48% 73.41% 76.19% 71.59% 72.72% 70.63%

Figure 3. The results of the comparison of the two highest accuracy results in samples | - X with GR 0.01 and
without GR

c. Best Accuracy Results of LVQ 1 with Gain Ratio with Default Threshold and Without Gain Rasio

uThe best accuracy result obtained by LVQ1 using Gain Ratio with default threshold Weka(-
1.7976D831348623157E308) is with the first workflow. The following is the comparison result of LVQ 1 accuracy
using @ain Ratio feature selection with threshold 0.01, which does not use feature selection in previous research[11].
In Figlite 4, the best accuracy comparison results are obtained in sample II using GR with a value of o= 0.1 which is
92.19%, while in previous research or without Gain Ratio only has the best result of 88.45% at o = 0.1. In sample I,
the b@_ accuracy results using GR were obtained with a = 0.4, 0.7, and 0.9, while in previous research the best results
in saniple I were obtained with o= 0.1, 0.4, 0.7, and 0.9. In sample III, the accuracy results using GR were obtained
at a =9.4 and 0.7, while in previous research, accuracy results were obtained at o = 0.1. In sample IV, the accuracy
results=using GR and the accuracy results in the previous research, the best accuracy results were both obtained at a
value rof o = 0.1. In sample V, the best accuracy results using GR were obtained at a value of o = 0.01, while in
prevmus research,the best accuracy results were obtained at a value of o = 0.4, 0.7, 0.9. In samples VI and VII, the
best acturacy results using GR were obtained at a value of o = 0.001, while in previous research, the best accuracy
resultsswere obtained at a value of a = 0.01. In samples VIII and IX the best accuracy results using GR and the best
accur@y results in previous research were obtained at a value of o= 0.01.

=

E ACCURACY COMPARISON RESULTS
= 100.00%

wn

I‘g 80.00%

=1

——- -

=h ) 60.00%

- =

9 jun]

® 5] 40.00%

e =

E 20.00%

b~

(=

o 0.00%

= I I III I\ A% VI VII VI X

GR default  91.39% 92.19% 83.93% 83.34% 80.53% 69.59% 71.34% 73.01% 75.03%
Without GR 91.39% 88.45%83.40%78.48% 73.41% 76.19% 71.59% 72.72% 70.63%

Figure 4. The results of the comparison of the two highest accuracy results in samples | - IX with GR default Weka
and without GR
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H@]est Accuracy Difference Results in Comparison of LVQ 1 with gain ratio with LVQ 1 and without gain ratio

=Table 9 shows the difference in the comparison of results between LVQ 1, which uses gain ratio and LVQ 1
@Which-does without gain ratio. It can be seen that the difference in accuracy results in the yellow-colored column
ahows?t'he accuracy results of LVQ1 using a gain ratio higher than the accuracy results with LVQ1 without gain ratio.
gn corpparison, the white column is the result of LVQ 1 accuracy using gain ratio lower than LVQ 1 that does without

‘galn r%tlo

q}:lume 5,No 1, June 2023 Page: 211-218

eld3 ey

na, = Table 9.The difference result of accuracy comparison
=] =
T Difference result of accuracy comparison LVQ1 GR threshold 0.01 - LVQ1
B = Testin sample
8 < g | 1 Il v V Vi Vil VIl 1X
“ V@1 GR threshold 0.01 91.39% 92.01% 84.01% 8557% 81.22% 69.43% 7857% 72.69% 74.87%
LVQ1 91.39% 88.45% 83.40% 78.48% 73.41% 76.19% 71.59% 72.72% 70.63%
Restlt Accuracy margin 0.00% 356% 0.61% 7.09% 7.81% -6.76% 6.98% -0.03% 4.24%
2 Difference result of LVQ1 GR threshold default accuracy comparison - LVQ1
IV Q1 GR threshold
o Default weka 91.39% 92.19% 83.93% 83.34% 80.53% 69.59% 71.34% 73.01% 75.03%
(-1.7976931348623157E308)
LVQ1 91.39% 88.45% 83.40% 78.48% 73.41% 76.19% 71.59% 72.72% 70.63%

Result Accuracy margin 0.00% 3.74% 053% 486% 7.12% -6.60% -0.25% 0.29%  4.40%

The result of the difference between LVQ 1 using a gain ratio with a threshold of 0.01 and LVQ 1 that does
not use a gain ratio, it can be seen that more yellow columns indicate that the accuracy results by LVQ 1 using a gain
ratio with a threshold of 0.01 is better than LVQ 1 without a gain ratio with the highest accuracy difference results is
in sample V which is 7.81%. The same is the case with LVQ 1, with a default threshold getting the highest accuracy
difference than LVQ 1 without Gain Ratio, with the highest accuracy difference in sample V of 7.12%.

4. CONCLUSION

In thls research, it can be concluded that the accuracy results obtained by the LVQ 1 algorithm are strongly influenced
by th -gain ratio feature selection implemented on the data before classification with LVQ 1. As explained earlier, the
gain rEMcI) feature selection mechanism is used in two research workflows. Different gain ratio thresholds (0.01 and
defaultweka(-1.7976931348623157E308)) will select features that are relevant to the data so that each threshold will
produ§ a different total of data features, then the new dataset is classified and tested so that the resulting accuracy
value =is better than the accuracy value obtained by LVQ1 without gain ratio feature selection. Thus, the
implementation of gain ratio feature selection is proven to improve the accuracy of LVQ1 algorithm, so gain ratio
feature-selection can be recommended to handle numerical data with many features. For future research, we can use
different thresholds from this research.

-
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