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Abstract. Various models used in stock market forecasting presented have been classified 

according to the data preparation, forecasting methodology, performance evaluation, and 

performance measure. However, these models have not sufficiently discussed in data 

preparation to overcome randomness, as well as uncertainty and volatility of stock prices 

issues in achieving high forecasting accuracy. Therefore, the focus of this paper is the data 

preparation procedure of triangular fuzzy number to build an improved fuzzy random auto-

regression model using non-stationary stock market data for forecasting purposes. The 

improved forecasting model considers two types of input, which are data with low-high 

and single point values of stock market prices. Even though, low-high data present 

variability and volatility in nature, the single data has to be form in symmetry left-right 

spread to present variability and standard error. Then, expectations and variances, 

confidence-intervals of fuzzy random data are constructed for fuzzy input-output data. By 

using the input-output data and simplex approach, parameters of the model can be 

estimated. In this study, some real data sets were used to represent both types of inputs, 

which are the Kuala Lumpur stock exchange and Alabama University enrollment. The 

study found that variability and spread adjustment are important factors in data preparation 

to improve accuracy of the fuzzy random auto-regression model.   

Keywords: low-high procedure, left-right spread, fuzzy random variable, auto-regression 

model, stock market 
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1   Introduction 

With the current world economic crisis, foreign exchange rates, foreign assets and stock 

market prices are indispensable indicators in the international financial markets. Since 

1997, some Asian countries’ currencies, such as, the Indonesian Rupiah (IDR), and 

Malaysian Ringgit (RM), have sharply decreased in value in comparison to the US 

dollar.  This scenario has had a serious economic impact resulting in the slowdown of 

the economic activities in these countries. The continuing depreciation trend of the 
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ASEAN currencies against US dollar has attracted many researchers, financial analysts, 

and academicians to explore the currency trading, especially in the development of an 

efficient method to forecast volatile exchange rates and stock market prices. Many 

methods to address these problems have been introduced ranging from linear and the 

non-linear regression to artificial intelligence algorithms [21].   

In the past few decades, most of the stock market analyses were derived using 

statistical-time series models, such as, regression, exponential smoothing, ARIMA, 

state space and Kalman filter. However, these models used a single point and they 

hardly fit non-linear data. Moreover, the stock market is a complex and dynamic 

system with noisy; non-stationary and chaotic time series [22, 38]. In order to solve 

both problems, artificial intelligence models, such as, neural network, genetic 

algorithm, and support vector machine based on the statistics have been suggested. 

Although these models can produce better forecast values, they cannot be implemented 

to predict the fuzzy data [35]. Besides that, the fuzzy models are tolerant of 

imprecision, uncertainty and approximation. As a result, they have become popular 

among academic community [39]. 

The conventional fuzzy time series (FTS) models are applied in real data 

applications, such as, university enrollment [24, 34], stock index price [1, 7, 9, 11, 36, 

44, 46], financial-exchange rate [15, 17, 19, 21, 28], and electricity load [20, 23]. 

Besides that, the recent hybrid fuzzy with particle swarms optimization [13, 36], neural 

network [49], support vector machine [10], granular computing [7], probabilistic 

hesitant fuzzy [51], intelligent pattern recognition [14] and data mining [41, 45] models 

are also explored to improve the accuracy of forecasting stock market. In building the 

forecasting model, the single point data are still applicable and using as input. 

However, the single point data are not guaranteed as reliable input.  Therefore, 

validating such single point data to achieve better accuracy in building the forecasting 

model should be considered. For illustration, if the stock market data are observed more 

than twice (multiple observations) a day. We will use average data to represent our 

daily observation generally. There is a possibility when the standard deviation 

(volatility) of the average data is very huge due to various reasons, such as, human 

error, machine error, measurement tools are not working well, or other political issues 

occur during data collecting procedure. If the single point data are to be used in 
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building the forecasting model, eventually, the huge standard deviation problems may 

contribute to increase the forecasting error indirectly.  

Additionally, the existing FTS and non-FTS models have not considered three major 

issues in data representation, such as, randomness, vagueness, and possibility. For 

example, different financial analysts may arrive at different conclusions when 

observing the trend of stock prices within a certain period. There is a possibility that 

some analysts will evaluate the stock prices performance based their experience and 

expertise. As a result, there are various possibilities in the evaluation, such as, “low, 

medium, high, and very high”, or other prices. The variations in the performance 

evaluation are considerably stochastic in nature.  In these cases, representing the 

performance evaluation using a single value is inappropriate. Therefore, the price 

evaluation would be more reasonable if presented in fuzzy random form [43].  

The potential of fuzzy theories in improving forecasting model can be found in 

various applications due to its well-known capability in bridging the gap between the 

numerical data (quantitative information) and the linguistic statement (qualitative 

information). Tanaka et al. [37] presented a linear regression analysis with fuzzy model, 

which treats fuzzy data instead of statistical data whereas Chang [6] discussed a fuzzy 

least-squares regression by using weighted fuzzy-arithmetic and the least-square fitting 

criterion.  There are other instances when the fuzzy concepts have been applied into the 

time series data by Watada [42]. From these examples, the researchers and 

academicians have already applied the fuzzy theories and concepts into the forecasting 

data, especially, the cross section and time series data. 

Watada et al.  [43] considered problems associated with randomness, fuzziness, and 

possibility in the presented scenario by introducing a fuzzy random regression model. 

In another study, Arbaiy and Watada [2] implemented a fuzzy random regression 

model for oil palm fruit forecasting. These researchers [2] and [43] focused on cross 

section data whereas, Shao et al. and Efendi et al. [19, 32] introduced fuzzy random 

regression (FR-R) to auto-regression (FR-AR) model for time series data applications. 

FR-AR model was applied the weekly Shanghai Composite Index data. In another 

application, Efendi et al. [18] emphasized the importance of adjusting left-right spread 

of triangular fuzzy number (TFN) in yearly electricity load data of Taiwan,  Wang et al. 

[41] proposed multi-period portfolio selection with dynamic risk/expected return level 
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under fuzzy random uncertainty. The recent studies, the fuzzy and random fuzzy 

variables theories are applied to solve supply chain master planning and network [40, 

48]. The existing literatures presented have illustrated various FR-R and FR-AR 

models that take the input data directly, without considering any preparation procedure.  

The main motivation of this paper is to provide a systematic procedure in handling 

low-high and single point of stock market prices data using fuzzy random variable. 

Additionally, the contribution of this paper is to primarily build a FR-AR model that 

accommodates both, low-high and single point of stock market data. In the case of low-

high data set, the importance of variability is emphasized, in the single point data set, 

the left-right spread procedure is introduced. Besides, influence of the procedure 

towards forecasting accuracy will be discussed.  

The rest of paper is organized in following manner. Section 2 contains the 

explanation on the fundamentals of fuzzy random variables and fuzzy random auto-

regression model. This followed by the construction of proposed low-high procedure is 

presented in Section 3, the empirical analysis using the daily Kuala Lumpur Stock 

Exchange (KLSE) and enrollment of Alabama University are presented in Section 4.   

The final section of the paper is the conclusion. 

 

2   Fundamental Theories of Fuzzy Random Variables 
 

This section provides the basic concepts of fuzzy random variables and fuzzy random 

auto-regression models. Both concepts are very important in providing information to 

support the background, methodology, and forecasting procedure discussed in this 

paper. 

 

2.1  Triangular Fuzzy Number (TFN) 

Definition 1: Triangular fuzzy number [31] 

A triangular fuzzy number denoted by   〈     〉 has the membership function, 
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The point  , with membership grade of 1, is called the mean value and      are the left 

hand and right hand spreads of   respectively. A TFN is said to be symmetric if both 

its spreads are equal, i.e., if     and is sometimes denoted by     〈   〉  Based on 

Definition 1, the illustration is explained as follows: 

Sometimes it may happen that some data or numbers cannot be specified precisely or 

accurately due to the error of a measuring technique or instruments etc. For example, if 

the height of a person is recorded as 160 cm, it is impossible in practice to measure the 

height accurately. In reality, the height is actually about 160 cm and it may be a bit 

more or less than 160 cm. Thus the height of the person can be written more precisely 

as a triangular fuzzy number (                  ), where   is the left and right 

spreads. In general, a symmetry TFN ” ” can be written as (            ), where 

  is the left and right spreads of a respectively. Alternatively, (            ) can 

be represented as 〈   〉 and Figure 1.  

 

 

 

 

 

 

                  Figure 1. Triangular fuzzy number  ̃  (                  ) 
 

 

2.2   Fuzzy Random Variables (FRV) 
 

Given some universe,  , let Pos be a possibility measure that is defined based on the 

power set Ƥ( ) of   . Let   be the set of real numbers. A function :   →   is said to be 

a fuzzy variable defined on   [31]. The possibility distribution    of   is defined by                               

𝛼 
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  ( ) = Pos{     },      , which is the possibility of event {     }.  For fuzzy 

variable  , with possibility distribution   , the possibility, necessity, and credibility of 

event {     } are given as follows [32, 43]: 

 

Pos {      } =       ( ),      ,                      (2) 

 

Nec {     } =   –      ( ),      ,                        (3) 

 

Cr {     } = ½ (1 +         ( )          ( )).        (4) 

 

 

From Eq. (4), the credibility measure is an average of the possibility and the necessity 

measures, i.e., Cr{.} = 
    * +      * +

 
. The motivation behind the introduction of the 

credibility measure is to develop a certain measure, which is a sound aggregate of the 

two extreme cases, such as the possibility (expresses a level of overlap and is highly 

optimistic in this sense) and necessity (articulates a degree of inclusion and is 

pessimistic in its nature). Based on credibility measure, the expected value of fuzzy 

variable is presented as follows. 

 

Definition 2. Expected value of fuzzy variable [30]  

Let   be a fuzzy variable and the expected value of   is defined as: 

 

 ( )        *     +          *     +   ,         (5) 

 

under the condition that the two integral are finite. Assume that     ,       -  is 

triangular fuzzy variable (TFV = TFN) as explained in Definition 1. Making use of         

Eq. (5), the expected value of   to be determined as follows: 

 

 ( )  
(            )

 
.                   (6) 

 

Definition 3. Fuzzy random variable [29] 
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Suppose that (       ) is a probability space and    is a collection of fuzzy variables 

defined based on possibility space ( , Ƥ( ), Pos), a fuzzy random variable is a mapping                 

          such that for any Borel subset   of  , Pos{ ( )     + is a measurable 

function of  . Let   be a fuzzy random variable of  . From the previous definition, we 

know, for each      , that  ( ) is a fuzzy variable. Furthermore, a fuzzy random 

variable   is said to be positive if, for almost every  , the fuzzy variable  ( ) is 

almost surely to be positive. For any fuzzy random variable   on  , for each      , the 

expected value of the fuzzy variable  ( ) is denoted by  ( ( )), which has been 

proven to be a measurable function of  , i.e., it is a random variable. Based on this 

condition, the expected value of the fuzzy random variable   is defined as a 

mathematical expectation of the random variable  ( ( ))  

 

Definition 4. Expected value of fuzzy random variable [29] 

If   is a FRV defined as the probability space (      ), then the expected value of   is 

defined by 

 

E, -      *   +
 

 
        *   +   

 

  
.                              (7) 

 

Let   be a FRV with finite expected value E, -. Then the variance of   is 

 

Var , -   ,(   , -) -.                                             (4) 
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2.3   Fuzzy Random Auto-Regression (FR-AR) Model 

In a time series analysis, the stationarity can be recognized from the time plot. If it 

observed that there are n values y1, y2, …, yn of a time series, then a plot of these values 

(against time) can be drawn to determine whether the time series is stationary. If n 

values seem to fluctuate with constant variation around a constant mean µ, then it is 

reasonable to believe that the time series is stationary. On the other hand, if the n values 

do not fluctuate around a constant mean or do not fluctuate with constant variation, 

then it is reasonable to believe that the time series in non-stationary [35]. The 

stationarity is one of the characteristic features in time series. This concept can be 

explained by using definitions and properties. The stationarity can be investigated in 

three linear stationary models such as autoregressive (AR), moving average (MA) and 

autoregressive-moving average (ARMA). In this paper, the explanation is subject to 

AR(p) model only.   

Let us assume now that    is a stationary series, the autoregressive or AR(p) model can 

be written as [5]:
 

                            ,             (11) 

where         are coefficients of            , respectively,    is an error models at 

time- .  Based on [32], the input and output data      for all               are fuzzy 

random variables, which are written as:  

 

   ⋃ 0(   
     

     
 )
 
    1

 
   ,        (12) 

 

where    is a time series data at time-  and its formatted as a triangular fuzzy number 

[left, l; center, c; ; right, r]. In this equation, all values are given as fuzzy numbers with 

probabilities. Thus fuzzy linear regression model is denoted as: 

 

 ̃                   ,                                 (13) 

 

where  ̃  denotes an estimate of the output and           are coefficients which have 

real values when triangular fuzzy random data       is presented in Table 1. 
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   Table 1. Fuzzy random input-output data 

Sample Output Input 

1                                          

2                                          (   ) 

… … …              …            … 

           (   )        (   )         (   ) 

 

A simple FR-AR model with coefficients ,  
    

 - and ,  
    

 - is written as: 

 

(  )  ,  
    

 -(    )  ,  
    

 -(    )  ,  
    

 -,       (14) 

 

Both coefficients in Eq. (14) can be derived by following the steps: 

 

Step 1: Provide a real time series data in the fuzzy data format [min, max] per 

interval time-t, such as, per week, per month, etc. For example, Week-1; 

[3020, 3050], Week-2; [3000, 3057], etc. 

Step 2: Divide the fuzzy data into the fuzzy random data [left, center, right] with 

probabilities. For example, week-1; FRD1 = [3020, 3030, 3040],      

    and  FRD2 = [3030, 3040, 3050],        . 

Step 3: Calculate the expected value (  ) and standard deviation (       ) of 

fuzzy random data (FRD) in Step 2 where, 

   = E(Y) = (Center of FRD1×    ) + (Center of FRD2 ×    ) 

      = (3030 × 0.4) + (3040 × 0.6)  

      = 3036 

   ( ) = E(Y – e)
2 

Standard deviation (       ) =  ( ) =     ( ) = 7.4 

Step 4: Determine the confidence-interval (CI) of FRD. For example, 

Week -1 : [(   –        ), (   +        )] = [3028.6, 3043.4] 

Step 5: Estimate CI for each coefficient model by using linear programming (LP) 

approach. 

Objective function:     ( )  ∑ (  
    

 ) 
   , 

Subject to 
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Step 6: From Step 5, define the confidence interval (CI) estimated for each 

coefficient model. 

 

 ̂  [ ̂ 
   ̂ 

 ]     [ ̂ 
   ̂ 

 ]    . 

 

3   Proposed Procedures in Data Preparation 

In real situations, non-stationary time series data frequently occur in our daily life, 

such as, electricity load consumption, stock market prices, temperature, airline 

passenger data, and others. It can be measured in many different ways, such as, low, 

high, average, minimum, maximum, closed and open values.  In this section, the stock 

market data input is introduced. Figure 2 highlights the classification of the input as: 

double input and single input. It is important to emphasize the classification of the data 

before deciding appropriate procedures for preparing the data towards building an FR-

AR model. A low-high procedure (Type-1) and a left-right procedure (Type-2) are 

proposed for double input and single input, respectively. Both preparation procedures 

are presented in Sections 3.1 and 3.2. 
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      Figure 2. Data classification and data preparation for building FR-AR model  
 

 

3.1   Low-High Procedure (Type-1) 

Generally, the existing models [1, 2, 7, 9, 11, 12, 13, 21, 22, 24, 34, 35, 38, 39] are 

limited to an application with single point input for building of stock market prediction 

models such as the ones presented in Figure 3.  Additionally, this type of input does not 

consider variability issue. Apparently, most of the data are obtained from secondary 

sources. Since the data are obtained from secondary sources, validity, biasness, 

measurement tools and representation issues or other human errors have to be resolved. 

Consequently, these limitations contribute to having less accurate forecasting models.   

Motivated by limitations of previous input data, use of daily low and high stock 

market data is called low-high (Type-1) procedure has been considered and suggested 

for this study. The benefit of using Type-1 procedure is useful to handle variability in 
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the data whereby, a more accurate forecasting model can be achieved as illustrated in 

Figure 4.  

 

              Figure 3. Single input data for building univariate-models 

 

 

                     Figure 4. Double input data for building FR-AR model 

 

There are other existing works using the smallest and largest values in the data to 

build a forecasting model in stock market application [19, 32]. However, the data 

preparation procedures to obtain fuzzy intervals using the minimum-maximum values 

from the data have not been extensively. Besides, the ranges of minimum-maximum 

values obtained are consistent throughout the data. However, the minimum-maximum 

data presented are lack originality and are not natural.  In Type-1 procedure, both 
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values can be obtained using daily low-high data of stock market. Two examples of 

stock market data are illustrated in Figure 5.  
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      Figure 5. The single point and low-high stock market data 

 

It is observed in Figure 5 that the range of stock market price is not equal for each day 

(interval time). There are variations in the pattern of stock behavior. The stock behavior 

pattern is a result of combination between trend and seasonal time series. The 

fluctuation in the stock market pattern can be observed using low-high procedure.  The 

low-high procedure may allow us to capture the variability in the consumption behavior 

that leads to better recognition in the pattern. Moreover, the gap between low and high 

values in the stock market can represent a range of data. By using the values in the 

range of data, the variability can be determined.  Since the low-high values fluctuate 

every day, thus, result the range values will also fluctuate. Besides the low-high values, 

fluctuation may be caused by other unpredicted factors.  Interestingly, the low-high 

values in Figure 5 can be transformed into triangular fuzzy number (TFN) directly. The 

result of the transformation is shown in Figure 6. 
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                                    Figure 6. Result of transformation in TFN 

 

Figure 6 shows the min-max data are presented in fuzzy format. Thus, the TFN is 

obtained directly and naturally without considering left-right spread. The 

transformation of low-high data to TFN is shown in Figure 7.  

 

         Figure 7. Demonstration of transformation from low-high data into TFN 

 

Based on Figure 7, the equivalence of low-high data with TFN is represented as: 

Low data (  
    )      Left spread of TFN (  

 ) 

Midpoint (  
 )            Center of TFN (  

 ) 

High data (  
    

)     Right spread of TFN (  
 ) 

Time series plot for low-high stock market data and TFN  

High Low

TFN forms for low-high data 
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Let   
    and   

    
 be a lowest and highest stock market data at time- , then both of 

them are written as: 

 

[  
      

    
 ]  [  

    
   
     

]  ,  
    

    
 -   ̃ ,                             (15) 

 

By using Eq. (15), all the actual low-high load data can be transformed into fuzzy 

format as presented in Table 2. 

 

                        Table 2. The low-high prices of stock market and fuzzy data 

Day (Time) Low High Fuzzy data (FD) 

    
    

  ,  
    

 - 
… … … … 

    
    

  ,  
    

 - 
 

The FD data in Table 2 are sufficient to build the desired FR-AR model. In other 

words, the electricity load consumption data have successfully been prepared using the 

low-high procedure, referred as Type-1 procedure.    

3.2   Symmetry Left-Right Spread Procedure (Type-2) 

 

Motivated by illustration in Section 1, we are really interested to transform the single 

point data into TFN form using symmetry left-right spread procedure. On the other 

hands, the concern is to achieve symmetry left-right (LRS) procedure in [2, 18, 19, 32, 

43] have not been well discussed. Although, the LRS procedure is commonly used in 

dealing with single data input, yet the rational of choosing inconsistent left-right spread 

values.   

Let    be time series at              and let   be possible spread values,                         

           .    can be transformed into TFN format using   values. Note that, 

although various   values are allowed to adjust the symmetry LRS of TFN, but at any 

   a consistent   value must be used. As a result, the transformation is written in 

mathematical form such as in Eq. (16).  

 

   ,            -  ,  
    

    
 -   〈  

   〉   ̃ ,                   (16) 
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where    
    

    
  are the results of transformation of     using CLRS procedure. Figure 

8 shows an example of      being transformed into TFN at t using symmetry left-right 

spread            .  

 

 

Figure. 8. Transformation of    at t into TFN using LRS procedure 

 
 

It is important to choose a k value that has the potential to reduce the forecasting error 

of FR-AR model. Different k values will lead to different TFN shapes. As a result, the 

TFN shapes will influence the expected value and standard deviation of fuzzy random 

data (FRD). Essentially, the expected value and standard deviation will influence the 

parameter estimation FR-AR model. Figure 9 shows the simulation results with four 

different time series data using              . Based on data size, there are various 

initial values of   used. In data set 1, initial value of   is 5, in data set 2, initial value of 

  is 3, in data set 3, initial value of   is 2 and in data set 4, initial value of   is 1. Note 

that, for each data set in Figure 9 three k values have been plotted to the highlight the 

differences in MSE. Apparently, a smaller k is able to produce smaller mean square 

error (MSE). In other words, there is a significant relationship between spread value of 

  and MSE.  

 

Time series plot for single point stock market data and TFN 

TFN forms for single point data 
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Figure 9. Simulation results to investigate the influence k values on MSE 

 

3.3   Proposed Algorithm for Building FR-AR Model 

In this section, the algorithm details in building FR-AR model [21, 32] are presented. 

The transformation steps for the type of data presented in Sections 3.1 and 3.2 are 

discussed. Additionally, the parameter estimate using linear programming (LP) 

approach is provided. The details of the proposed algorithm: 

Step 1: Transform the actual time series into TFN based on the procedures in 

Sections 3.1. and  3.2. 

Step 2: Determine fuzzy data (FD) using the TFN results in Step 1 and Table 2 

format. 

Step 3: Divide FD into two groups of fuzzy random data, FRD1 and FRD2. Based 

on Table 3, the length ( ) for each FD can be defined as the difference 

between upper (  ) and lower data (  ), such as            . By using 

value of  , the fuzzy random time series data can be divided into FRD1 and 

FRD2 presented in Table 3. 
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Table 3. Presentation of TFN results in FD form 

Time Fuzzy data FRD1, , (   ) - FRD2, , (   ) - 
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The TFN of each FRD1 and FRD2 is illustrated in Figure 10. 

 

                                            Figure 10. TFN for FRD1 and FRD2 

Step 4: Calculate the expected value  ( ) and     ( ) of FRD.  

To clarify how    ( )  is obtained, an example from Table 3 at t = 1will be 

used. Let the probabilities,     and     be equal such as              

and          . Note that, by Definition 3, the values for      and     

may be generated randomly. The formula for  ( ) is written as follows: 

 ( )      (    )      (    )   

 ( )     .  
  

 

 
  /     .  

  
 

 
  /, 

            (   
    ), 

                                  
 

 
(   

    ), 

                                    
  

  

 
.            (17) 

The variance of   is defined as: 
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where    ( ) is given in Eq. (16). To obtain    ( ),  ,(      ( )) - and 

 ,(      ( )) - are calculated as follows: 
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Moreover, to compute 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 

 

  *  
   +  

{
 
 

 
 4   

  
 ( )5

 
               .

  

 
/
 

4 
  
 ( )5

 
          .

  

 
/
 

   .
  

 
/
 

                              

.        (19) 

 

Therefore, from Definition (1), the following equation is obtained:  
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Thus, 

   ( )      (  
 )      (  

 ),          (20) 

Before building FR-AR with parameter estimates, a confidence-interval is induced by 

 ( ) and        ( ) of a fuzzy random variable (FRD). Then the one-sigma 

confidence (   ) interval (CI) of each FRD [43] is considered. The CI of FRD is 

expressed as follows: 

 

   , ( )          ( )  ( )          ( )-.                          (21) 

 

Note that, the CI adopted in this step is different from the one used to estimate sample 

mean. The corresponding CI (output) results for each FRD1 (input) and FRD2 (input) 

are presented in Table 4. 
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Table 4. CI for each FRD 
 

Time Output, , ( )-  = CI of FRD Input 

 ̃    (FRD1)  ̃    (FRD2) 

1 [  ( )           ( )   ( )  
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Step 5: The general FR-AR model is expressed as: 

   [ ̂  
  ̂ 

 ] ̃    [ ̂  
  ̂ 

 ] ̃   ,                       (22) 

Note that, a linear equation system is to be developed using the input 

(FRD1, FRD2) and output (FRD) in Table 4. There are two linear 

equation system to be developed for left-right inputs. Then, both linear 

equation systems will be solved using linear programing (LP), namely, 

simplex approach to estimate the parameters of FR-AR model.  To use 

this approach, an objective function and it constraints will be defined as 

follows: 

The ultimate goal of the objective function is to minimize the interval 

length (  ( )) of parameters. 

Objective function:    
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   ),           (23) 
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Step 6: Determine the predicted FR-AR model from Step 5. 

 

 ̂  [ ̂  
  ̂ 

 ] ̃    [ ̂  
  ̂ 

 ] ̃   ,            (24) 

 

which  ̂  is a predicted fuzzy random time series at time-t,  ̂  
  ̂ 

  and  ̂  
  ̂ 

  

are the pair predicted parameters of fuzzy random time series ( ̃     ̃   ), 

respectively. The uniqueness of the estimated model parameters is that the 

left-right values are always the same. Therefore, Eq. (24) is capable of 

forecasting three different values, low, medium and high which are as 

follows: 

 

 ̂  

{
 

 
[ ̂ 
 ] ̃    [ ̂ 

 ] ̃                                          

[ ̂ 
 ] ̃    [ ̂ 

 ] ̃                                         

   
 ̂ 
   ̂ 

 

 
                                                            

,                 

(25) 

 

This is unlike existing models which are limited to forecasting single value 

only.  

 

 

Step 7: Evaluate and interpret the min-max-average width of the possibility of 

model based on the following criteria: 

          ( ̂ 
   ̂ 

 ),            (26) 

 ̅  
 

 
∑ ( ̂ 

   ̂ 
 ) 

   .            (27) 

Eq. (26) can be used to determine the minimum and maximum width of the 

model’s possibility and the average can be determined using Eq. (27). 

Essentially, if the average is smaller, then the vagueness in the proposed 

model should also be smaller. The steps for building FR-AR model are 

summarized in Figure 11.  
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  Figure 11. Summary of steps to build the FR-AR model 

 

4.  Implementation 

The proposed algorithm to build the FR-AR model was applied to real stock market 

and university enrollment data sets. Note that, the data sets are non-stationary time 

series and these data may present trend, seasonal, or a combination of both.  Such data 

presentations are found frequently in various problem domains. Thus, a reliable 

forecasting model is important and needed to improve prediction in the problem 

domain.  Stock prices data of Kuala Lumpur Stock Exchange (KLSE) are used to 

demonstrate Type-1 procedure and the yearly enrollment of Alabama University as 

benchmark data are used to demonstrate of Type-2 procedure. 

 

4.1 Implementation of Low-High Procedure (Type-1) 

In this section, the daily low-high data of Kuala Lumpur Stock Exchange (KLSE) 

from 2006-2009 and 2016 were randomly selected for model evaluation. To 

demonstrate the steps given in Section 3.3, then KLSE 2009 data are used as follows:  

Step 1: Transform the daily low-high KLSE data into FD and TFN formats as 

shown in Table 5.  

 

 

Transform actual data 
into TFN data         
(Type-1, Type-2) 

Devide fuzzy data into 
fuzzy random data with 
random probabilities 
(Type-1, 2) 

Calculate the expected 
values of fuzzy random 
data (Tyep-1, 2)   

Calculate the standard 
deviations of fuzzy 
random data            
(Tyep-1, 2)   

Determine the intervals 
of fuzzy random data 
(Tyep-1, 2)   

Estimate the 
coefficients of FR-AR 
model using linear 
programming approach 

Express the proposed 
FR-AR models        
(Type-1, Type-2) 

Evaluate the average 
width possibility of 
proposed FR-AR models         
(Type-1, 2) 
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Table 5. Low-high, FD and TFN data of KLSE 2009 
Day Low-High data Fuzzy data (FD) TFN data 

1 879.5, 901.0 [879.5, 901.0] [879.5, 890.3, 901.0] 

2 903.5, 928.0 [903.5, 928.0] [903.5, 915.3, 928.0] 

3 916.5, 934.5 [916.5, 934.5] [916.5, 925.3, 934.5] 

… …  … 

145 1165.5, 1177.0 [1165.5, 1177] [1165.5, 1171.3, 1177] 
 

  

Step 2: Divide fuzzy data (FD) in Step 1 into FRD1 and FRD2 with random 

probabilities as shown in Table 6. 

Table 6. FRD1 and FRD2 of KLSE 2009 

Day FRD-1 Pr-1 FRD-2 Pr-2 

1 [879.5, 886.66, 893.83] 0.4 [886.66, 893.83, 901.0] 0.6 

2 [903.5, 911.66, 919.83] 0.2 [911.66, 919.83, 928.0] 0.8 

… … … … … 

145 [1165.5, 1169.33, 1173.16] 0.1 [1169.33, 1173.16, 1177.0] 0.9 
 

  

Step 3: Calculate expected value (  ) and standard deviation (       ) of FRD. 

For example, 

     (    )        , 

     (    )        , 

    (   )       (    )       (    )        . 

The other    and         of FRD are shown in Table 7. 

 

 

 

 

Table 7.    and         of FRD of KLSE 2009 
Day            

1 888.81 4.6 

2 915.75 5.7 

… … … 

145 1170.48 2.4 
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Step 4: Determining CI of FRD is presented in Table 8. 

Table 8. CI of FRD 

Day Confidence Intervals 

1 [884.2, 893.4] 

2 [910.1, 921.4] 

… … 

145 [1168.0, 1172.9] 
 

  

Step 5: Estimate coefficients of FR-AR model using linear programming approach 

(LP), namely, simplex method. In this case, 80% of actual low-high data 

have been used to estimate of coefficients FR-AR model. The rest of data 

were used as model validation (testing data).  

Min =∑ ( ̂  
   ̂  

 )  ( ̂  
   ̂  

 ),  ̂  
  ≥  ̂  

  ,  ̂  
  ≥  ̂  

 . 

Subject to 

Inequalities of Left-LP: 

879.5  ̂  
  + 886.66  ̂  

  ≤ 884.2 

903.5  ̂  
 +  911.66  ̂  

  ≤ 910.1 

 …                     …                   … 

1052.5  ̂    
  + 1060  ̂    

  ≤ 1168.0 

 

Inequalities of Right-LP: 

893.83  ̂  
  + 901.0  ̂  

  ≤ 893.4 

919.83  ̂  
 +  928.0  ̂  

  ≤ 921.4 

…                     …                   … 

1067.5  ̂    
  + 1075.0  ̂    

  ≤ 1172.9 

 ̂  
  ≥ 0,  ̂  

  ≥ 0,  ̂  
  ≥ 0,  ̂  

 ≥ 0 

  

Step 6: Based on the simplex approach, the estimated parameters and predicted FR-

AR model obtained are as follows: 
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 ̂   =  ̂  
 =  ̂  

  =  0.4026755 

 ̂   =  ̂  
 =  ̂   

 =  0.5972301 

                ̃  =            ̃    +            ̃    .                                      

(28) 

  

Step 7: Based Equations (26) and (27), evaluate width and ambiguity of proposed 

FR-AR model for KLSE data as follows: 

Width minimum of FR-AR model : 0.666. 

Width maximum of FR-AR model : 23.333. 

Average width of FR-AR model    : 9.907. 

 

Eq. (28) is the proposed FR-AR model for KLSE 2009. Moreover, this is used to 

estimate the training data from day-3 to day-116. For example, the forecasted values for 

low-midpoint-high stock market at day-2 is based on day-1 and so on. By using FRD 

data in Table 6, the predicted   ̂ 
   ,  ̂ 

   , and  ̂ 
    

 are follows:  

 

FRD1; (    )  ,                    -, 
 

FRD2; (    )  ,                    -, 
 

Based on Eq. (18), the following values are derived: 

 

 ̂ 
             (      )           (      )        , 

 

 ̂ 
             (      )           (      )        , 

 

 ̂ 
    

          (      )           (      )        . 

 

The forecasted values of low-mid-high (For-Low-Mid-High) stock are 885.15, 889.06, 

and 896.33. By following the example at day-2, the results of training (day-3 to day-

116) and testing data (day-117 to day-145) are presented in Tables 9-11. 
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               Table 9. Actual low-high of KLSE and training data 

Day  Low     High    For-Low For-High 

1 879.50 901.00 * * 

2 903.50 928.00 885.15 896.33 

3 916.50 934.50 919.99 930.99 

4 920.00 942.50 924.39 939.39 

5 910.00 920.50 912.00 917.00 

          

115 1053.00 1064.00 1051.09 1060.42 

116 1043.50 1064.00 1047.48 1059.15 

MSE       109.75       95.06 

 

                Table 10. Actual-midpoint, training and testing data of KLSE 

Day Midpoint M-Training Day Midpoint M-Testing 

1 890.25 * 1 1039.25 1036.69 

2 915.75 916.46 2 1052.50 1051.98 

3 925.50 923.99 3 1067.25 1062.78 

4 931.25 929.89 4 1076.75 1074.97 

5 915.25 913.50 5 1079.00 1080.16 

           

115 1058.50 1054.75 28 1164.25 1167.25 

116 1053.75 1050.31 29 1171.25 1168.41 

 MSE 45.1875  MSE 47.2054 

 

               Table 11. Actual low-high of KLSE and testing data 

Day  Low       High    For-Low For-High 

1 1031.00 1047.50 * * 

2 1043.50 1061.50 1041.99 1058.98 

3 1057.50 1077.00 1061.28 1072.28 

4 1072.00 1081.50 1070.79 1083.12 

5 1075.00 1083.00 1072.49 1081.82 

          

28 1158.00 1170.50 1160.38 1166.71 

29 1165.50 1177.00 1162.68 1175.36 

MSE     70.78       75.65 

 

Moreover, the fitting between actual low-mid-high of KLSE data and their forecasted 

values are illustrated in Figures 12-14.  
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Figure 12. Fitting actual low-high and training of KLSE 2009 
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Figure 13. Fitting actual midpoint, training and testing of KLSE 2009 
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Figure 14. Fitting actual low-high and testing of KLSE 2009 

 

Figures 12-14 show the fitting of low-midpoint-high of actual KLSE 2009 with their 

forecast values.  Apparently, the training data derived from proposed FR-AR model      

(Eq. 18) have a very close majority of the actual KLSE 2009. As the majority of the 

data have been captured, therefore, both graphs that are the actual and FR-AR models 

are very similar. The graph for testing data is the most similar to the graph of actual 

data. The rest of the models are not capable of producing graphs as good as the FR-AR 

model. The graph of the training data is close to the actual data as well as, the graph for 
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the testing data.  Such finding indicates that proposed FR-AR model using Type-1 

procedure outperforms from the other models. Based on due to the performance of the 

FR-AR model, this model was used to forecast three different values simultaneously 

that are: low, midpoint and high of KLSE prices.  

In a comparison study, the evaluation of mean square error (MSE) was considered 

using models conventional ones ranging from until soft computing models. Recently, 

other forecasting algorithms have been employed in some excellent works, such as the  

multivariate statistical combination forecasting method for product quality evaluation 

[43]. However, the baseline models are namely the univariate forecasting models, such 

as, ARIMA, GARCH, single exponential smoothing (SES), double exponential 

smoothing (DES), fuzzy time series (FTS), exponential fuzzy time series (E-FTS), 

support vector machine (SVM), fuzzy metagraph (FM), fuzzy auto regression (F-AR) 

and existing FR-AR models  in MSE. Due to the limitation of these univariate models, 

daily midpoint (average) of KLSE 2009 data were only used  for comparison as 

presented in Table 13.  

Table 13. Evaluation of MSE of KLSE 2009 
Model MSE  

Training data (In-sample forecast) Testing data (out-sample forecast) 

ARIMA [4] 138.10 355.97 

GARCH [4]  132.24 287.56 

SES [5] 274.77 286.86 

DES [5] 287.62 299.45 

SVM [1] 124.89 221.78 

FTS [20]   74.29 91.90 

E-FTS [36]   70.77 145.34 

FM [1]   72.67 130.97 

F-AR [32]   67.02 88.00 

FR-AR [32]   62.26 75.87 

FR-AR [19]   50.19 50.21 

Proposed FR-AR      45.18
** 

  47.20
** 

**
: smallest MSE 

 

In Table 13, KLSE 2009 is divided into training and testing data. MSEs of the proposed 

FR-AR model are smaller than the others, training and testing. The MSE values of the 

proposed model imply that the forecasting error can be reduced significantly. The FR-

AR model benefits from the use of low-high data in Type-1 procedure becuase the 

model parameters obtained are more accurate. Consecutively, the variability and 

volatility of daily stock market data can be handled using this procedure. The 
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forecasted values tend to be near to the medium data, thus indicating the accuracy has 

improved. On the other hand, the existing univariate models have bigger MSE values in 

comparison with the proposed model, because the low-high of stock market data were 

not implemented in the building of these models.  Moreover, only some KLSE data sets 

using the proposed model from 2006, 2007, 2008 and 2016 were evaluated and 

presented in Table 14. 

 

Table 14. MSE comparisons of KLSE from 2006 - 2008, and 2016 
Model MSE (KLSE 2006) MSE (KLSE 2007) MSE (KLSE 2008) MSE (KLSE 2016) 

Training Testing Training Training Training Testing Training Training 

ARIMA [4] 140.932 234.565 137.643 311.899 136.785 139.533 134.634 137.521 

GARCH [4] 138.671 210.598 132.765 300.433 131.111 137.231 132.892 135.214 

SES [5] 99.190 101.120 274.73 278.43 354.577 360.344 116.324 129.869 

DES [5] 98.012 101.101 287.62 290.64 388.866 392.112 115.734 126.553 

SVM [1] 129.975 196.658 130.589 287.764 128.451 147.097 140.239 147.198 

FTS [20] 118.978 122.987 122.632 198.823 124.776    129.761 135.213 138.835 

E-FTS  [36] 115.211 132.245 120.543 207.453 134.876 139.675 140.671 147.642 

FM [1] 120.764 130.976 129.754 200.634 133.532 137.343 138.832 142.443 

F-AR [32] 115.108 119.765  119.452   180.765    125.654    129.107    130.872    139.211 

FR-AR [32] 111.734 117.908 115.723 163.865 122.534 125.635 123.223 133.334 

FR-AR [19] 105.233 113.551 112.003 143.229 120.111 121.197 120.564 130.113 

Proposed FR-

AR  

95.02** 100.06** 100.49**  120.26**  115.17** 118.14**  114.02**  125.12** 

**
: smallest MSE 

Table 14 shows the MSE comparisons between the proposed model and other existing 

models. In these comparisons, the daily average of KLSE data from 2006, 2007, 2008 

and 2016 were studied. Conventional time series models, ARIMA and GARCH were 

selected for use in this comparison, because they are frequently implemented in the 

stock market forecasting models. Moreover, other soft computing models were also 

considered in error evaluation. From this table, the proposed FR-AR model with Type-

1 procedure is able to reduce the forecasting error significantly for the four year data 

sets if compared with the existing time series and soft computing models. From our 

perspective, the merit of the proposed procedure can also produce the parameters model 

in intervals form. These intervals can support the daily range of values that are 

approximately the expected value of stock market data likely to contain the estimation 

target. Thus, the forecasting accuracy is achieved significantly if compared with the 

existing non-fuzzy random models.  
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4.2 Implementation of Left-Right Procedure (Type-2) 

 In this section, the implementation of Type-2 procedure to forecast the yearly 

enrollment of Alabama University from 1972 to 1992 is presented. This data set is the 

benchmark and frequently used in fuzzy time series forecasting. By following the steps 

given in Section 3, the proposed FR-AR model of enrolment is written as: 

 

 ̂  = ,          -(    ) .                                                             (19) 
 

 

Based on Eq. (14), same parameter estimates for the left and right values ( ̂ 
        

and  ̂ 
       ) for each model were obtained. Then, the root of mean square error 

(RMSE) of the models were compared with the existing fuzzy time series (FTS) models 

in Table 15.  

              Table 15. RMSE comparison for Alabama enrollment forecasting 
Model RMSE Rank 

FTS-Yolcu et al. [3] 805.1 14 

FTS-Song &Chissom [34] 650.4 13 

FTS-Chen [12] 638.3 12 

SES [5] 526.2 11 

FTS-Qiu et al. [3] 511.3 10 

DES [5] 507.8 9 

FTS-Lee & Chou [3] 501.2 8 

FTS-Huarng [3] 476.9 7 

FTS-Cheng et al. [3] 478.4 6 

FTS-Joshi & Kumar [3] 433.7 5 

FTS-Ismail et al. [24] 400.2 4 

FTS-Kumar & Gangwar [3] 493.5 3 

FTS-Bisht & Kumar [3] 428.5 2 

Proposed FR-AR   149.2
** 

1 

 

Due to the limitation of FTS models, only average values for comparison were used. 

Bearing in mind that the data have been divided into training and testing data. The 

RMSE for the FR-AR models are smaller than FTS models, the RMSE values of 

proposed model imply that the forecasting error can be reduced significantly. In other 

words, the FR-AR model benefits from the use of left-right values in the proposed 

procedure because the estimated parameters can reduce the randomness, vagueness and 

possibility of data. Thus, the variation will be minimised too and controlled. As a 
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result, the predicted values tend to be near to the medium data and the accuracy is 

improved. Moreover, the actual enrollment and the forecasted values derived by the 

proposed FR-AR and other FTS models are illustrated in Figure 15. 

 

       Figure 15. Fitting actual enrollment and forecasted values using some models 

 

Based on Sections 4.1 and 4.2, the advantages of the proposed procedures, Type-1 and 

Type-2 in improving the performance of FR-AR model on various items are presented 

in Table 16. 
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Table 16. The advantages of Type-1 and Type-2 procedures 
Item Type-1 Type-2 

 

Input data Appropriate for double inputs, such as, 

min-max values, low-high values, and 

others.  

Appropriate for single input, such as, 

mean, average, sum, and others. 

  TFN Adjustment is unnecessary since data are 

presented in fuzzy form (low-high 

interval).  

Adjustment is necessary for left-right 

spread of TFN. 

Parameter 

estimate 

Significant parameters can be obtained if 

the average range between min-max data 

is small. 

Significant parameters can be obtained if 

smaller spread is considered. 

Forecasting 

model 

Appropriate for determining low, 

medium and high values simultaneously. 

Appropriate for determining medium or 

central value (single value) only. 

Vagueness 

model 

Can be reduced if there is a small gap 

between low-high data. 

Can be reduced if the spread is small 

enough. 

Effectiveness  Appropriate for multiple observations 

with a small gap (range) between 

minimum and maximum values in a day, 

a week, etc. For example, stock market, 

temperature, exchange rate, electricity 

load consumption data, and others.  

Appropriate for limited observations. In 

this case, the measurement total or 

average observations are main intention 

of researchers. For example, enrollment, 

tourism, arrival-departure airlines 

passengers data, and others. 

 

5. Conclusion 

In this paper, two type procedures in handling the single point data (single record) 

issues, namely, low-high procedure (Type-1) and left-right spread procedure (Type-2) 

were discussed. Both procedures are subjected to solve the biasness of the human and 

machine errors during data collecting, especially, multiple observations data such as, 

the stock market data. Therefore, the forecasting accuracy of FR-AR model can be 

improved significantly.  

The FR-AR model was implemented to forecast real stock market data sets. In the 

case of data with a small gap between low and high values, Type-1 procedure is more 

appropriate. Essentially, the smaller width of the possibility indicates that the model is 

obtained naturally with Type-1 procedure. Consequently, the vagueness model can be 

lessened. On the other hand, Type-2 procedure is more appropriate when a large gap 

exists between the low and high data. In this procedure, a smaller vagueness model can 

be achieved if a small   value is considered. Mathematically, the better parameters of 

FR-AR model can be obtained if the gap between minimum and maximum data is not 

too large. 
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In the algorithm to build FR-AR model, we used fuzzy random data (input-output 

data) to develop linear equation systems. The linear equation systems were then solved 

using linear programming (LP) approach, namely, simplex approach to estimate the 

parameters of the model. Since the parameter values obtained are the same for left and 

right, thus, determining three predicted values (low-medium-high) simultaneously is 

possible.  

In the comparison of MSE, non-fuzzy and fuzzy models, namely, SES, DES, ARIMA 

and FTS have been considered. Based on the applications, the proposed FR-AR model 

with two different input types (Type-1 and Type-2) outperforms other existing models 

for both inputs. Based on the finding, this study can be implemented in handling the 

non-stationary time series data from various domains. 
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research in your own words and attract interest. You will receive an invitation email to create an AudioSlides presentation
shortly. For more information and examples, please visit http://www.elsevier.com/audioslides.

Thank you once again for your submission to Information Sciences.

Kind regards,

Witold pedrycz
Editor-in-Chief
Information Sciences

Reviewer #1: The paper can be accepted in its present form.

Reviewer #2: This paper is acceptable.

Riswan Efendi <riswan.efendi@uin-suska.ac.id> 8 February 2018 at 10:52
To: Information Sciences <INS@elsevier.com>

Dear Editor and Porf. Witold P,

We really thanks so much to EIC of Inf. Sciences and great reviewers. We are very happy with your information and
emails. All procedure for submission will be followed accordingly Prof.
Again thanks so much  Prof.

Best Regards,

Riswan Efendi, PhD
Fuzzy Time Series and Fuzzy Random Auto-Regression Modelling
Mathematics Department, UIN Suska Riau, Indonesia

[Quoted text hidden]
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Riswan Efendi <riswan.efendi@uin-suska.ac.id> 8 February 2018 at 10:54
To: nureize arbaiy <nureize@gmail.com>, Prof Dr Mustafa Mat Deris <mmustafa@uthm.edu.my>

Salam Prof and Dr,
Alhamdullilah dan bersyukur sangat2 atas diterimanya paper kita pada journal yg very high impact ini.
Terima kasih atas pertolongan dan kerjasama yang diberikan.

Best Regards,

Riswan Efendi, PhD
Fuzzy Time Series and Fuzzy Random Auto-Regression Modelling
Mathematics Department, UIN Suska Riau, Indonesia

[Quoted text hidden]

nureize arbaiy <nureize@gmail.com> 8 February 2018 at 12:28
To: Riswan Efendi <riswan.efendi@uin-suska.ac.id>
Cc: Prof Dr Mustafa Mat Deris <mmustafa@uthm.edu.my>

Alhamdulillah...syukur.. terima kasih Dr
[Quoted text hidden]

Riswan Efendi <riswan.efendi@uin-suska.ac.id> 8 February 2018 at 14:13
To: nureize arbaiy <nureize@gmail.com>

Ini Dr, biase aje sebetulnya....boleh lah tengok2

Best Regards,

Riswan Efendi, PhD
Fuzzy Time Series and Fuzzy Random Auto-Regression Modelling
Mathematics Department, UIN Suska Riau, Indonesia

[Quoted text hidden]

2 attachments

Reply Referee's Comments Inf. Sci 2017 (R2).docx
19K

Reply Referee's Comments Inf. Sci 2017.docx
18K

Riswan Efendi <riswan.efendi@uin-suska.ac.id> 8 February 2018 at 14:14
To: nureize arbaiy <nureize@gmail.com>

sorry revision 2 file nya ini yg betul

Best Regards,

Riswan Efendi, PhD
Fuzzy Time Series and Fuzzy Random Auto-Regression Modelling
Mathematics Department, UIN Suska Riau, Indonesia

https://mail.google.com/mail/u/2/?ui=2&ik=84b1643eca&view=att&th=1617442db5d27c91&attid=0.1&disp=attd&realattid=f_jde5pi3y0&safe=1&zw
https://mail.google.com/mail/u/2/?ui=2&ik=84b1643eca&view=att&th=1617442db5d27c91&attid=0.2&disp=attd&realattid=f_jde5urld1&safe=1&zw


4/14/23, 1:11 PM Universitas Islam Negeri Sultan Syarif Kasim Riau Mail - Decision on INS-D-16-2025R2

https://mail.google.com/mail/u/2/?ik=84b1643eca&view=pt&search=all&permthid=thread-f:1591791787532130700&simpl=msg-f:15917917875321307… 3/3

[Quoted text hidden]

Revision 2.docx
14K

Prof Dr Mustafa Mat Deris <mmustafa@uthm.edu.my> 8 February 2018 at 22:28
To: Riswan Efendi <riswan.efendi@uin-suska.ac.id>
Cc: nureize arbaiy <nureize@gmail.com>

Tahniah ....dan teruskan lagi....supaya Dr. Riswan dan Dr. Nureize menjadi dosen yang berkualiti .

Wassalam.
Mustafa Mat Deris

From: "Riswan Efendi" <riswan.efendi@uin-suska.ac.id>
To: , "Prof Dr Mustafa Mat Deris" <mmustafa@uthm.edu.my>
Sent: Thursday, 8 February, 2018 11:54:28
Subject: Fwd: Decision on INS-D-16-2025R2
[Quoted text hidden]
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Riswan Efendi <riswan.efendi@uin-suska.ac.id> 9 February 2018 at 13:53
To: Prof Dr Mustafa Mat Deris <mmustafa@uthm.edu.my>

Amin , terima kasih Prof, semoga macam Prof jugak suatu hari nanti.

Best Regards,

Riswan Efendi, PhD
Fuzzy Time Series and Fuzzy Random Auto-Regression Modelling
Mathematics Department, UIN Suska Riau, Indonesia

[Quoted text hidden]
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