Optimasi Convolutional Neural Network NASNetLarge Menggunakan Augmentasi Data untuk Klasifikasi Citra Penyakit Daun Padi

 Afiana Nabilla Zulfa (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 (*)Jasril Jasril Mail (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Muhammad Irsyad (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Febi Yanto (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Suwanto Sanjaya (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)

(*) Corresponding Author

Submitted: April 5, 2023; Published: April 27, 2023

Abstract

Diseases that attack rice are one of the elements that can reduce rice production. Rice diseases include Blast, Brown Spot, Leaf Smut, and so on. Distinguishing rice disease from sight has a weakness because rice disease has similar symptoms and characteristics. Farmers lack knowledge in identifying rice disease types so that technology is needed that can help distinguish rice diseases. The method used for rice image classification in this study is the Convolutional Neural Network NASNetLarge architecture. There are two classification processes, namely the classification process using data augmentation and without data augmentation. The data consists of 4 classes, namely Healthy, Leaf Smut, Blast, and Brown Spot with a total of 440 original images and 1320 augmented images. This study uses data augmentation, namely Horizontal Flips, Vertical Flips, and Contrast. The results for the classification process without data augmentation obtained the highest accuracy, namely 94.31%, 100% precision, 100% recall, and 100% f1-score at a ratio of 80:20, learning rate 0.1, dense 256, batch size 32, and optimizer Adam. While the accuracy obtained in the classification process using data augmentation is 98.73%, 96.11% precision, 100% recall, and 98.01% f1-score at a ratio of 70:30, learning rate 0.1, dense 16, batch size 128, and the Adagrad optimizer. The accuracy results show that the data augmentation and hyperparameters used can increase the accuracy in classifying rice leaf disease images.

Keywords


Augmentation; Classification; CNN; Rice; NASNetLarge

Full Text:

PDF


Article Metrics

Abstract view : 152 times
PDF - 78 times

References

Baheramsyah, “Indonesia Peringkat Ketiga Penghasil Beras Terbesar di Dunia,” InfoPublik, Mar. 26, 2021. https://infopublik.id/kategori/nasional-ekonomi-bisnis/521429/indonesia-peringkat-ketiga-penghasil-beras-terbesar-di-dunia (accessed Oct. 17, 2022).

Badan Pusat Statistik, “Luas panen padi pada tahun 2020 mengalami penurunan dibandingkan tahun 2019 sebesar 0,19 persen dan produksi padi pada tahun 2020 mengalami kenaikan dibandingkan tahun 2019 sebesar 0,08 persen,” Badan Pusat Statistik, Mar. 01, 2021. https://www.bps.go.id/pressrelease/2021/03/01/1855/luas-panen-padi-pada-tahun-2020-mengalami-penurunan-dibandingkan-tahun-2019-sebesar-0-19-persen-dan-produksi-padi-pada-tahun-2020-mengalami-kenaikan-dibandingkan-tahun-2019-sebesar-0-08-persen.html (accessed Oct. 17, 2022).

Badan Pusat Statistik, “Luas panen dan produksi padi pada tahun 2019 mengalami penurunan dibandingkan tahun 2018 masing-masing sebesar 6,15 dan 7,76 persen,” Badan Pusat Statistik, Feb. 04, 2020. https://www.bps.go.id/pressrelease/2020/02/04/1752/luas-panen-dan-produksi-padi-pada-tahun-2019-mengalami-penurunan-dibandingkan-tahun-2018-masing-masing-sebesar-6-15-dan-7-76-persen.html (accessed Oct. 17, 2022).

F. Haidi, “Tanaman Padi di Segintung Terserang Penyakit,” borneonews.co.id, Mar. 02, 2020. https://www.borneonews.co.id/berita/158888-tanaman-padi-di-segintung-terserang-penyakit (accessed Oct. 17, 2022).

Admin Berita Merdeka Online, “Daun Padi Menguning di Ulu Barumun Diduga Serangan Jamur Resahkan Petani,” beritamerdekaonline.com. beritamerdekaonline.com, Padang Lawas, 2020. Accessed: Oct. 17, 2022. [Online]. Available: https://www.beritamerdekaonline.com/2020/06/daun-padi-menguning-di-ulu-barumun-diduga-serangan-jamur-resahkan-petani/

M. Khoiruddin, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network,” Data Institut Teknologi Telkom Purwokerto, vol. 2, no. 1, pp. 37–45, Feb. 2022, [Online]. Available: https://www.kaggle.com/tedisetiady/leaf-rice-disease-

Ulfah Nur Oktaviana, Ricky Hendrawan, Alfian Dwi Khoirul Annas, and Galih Wasis Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1216–1222, Dec. 2021, doi: 10.29207/resti.v5i6.3607.

S. Ramesh and D. Vydeki, “Application of machine learning in detection of blast disease in south indian rice crops,” Journal of Phytology, vol. 11, pp. 31–37, Apr. 2019, doi: 10.25081/jp.2019.v11.5476.

R. Kumar, G. Baloch, A. Baseer Buriro, and J. Bhatti, “Fungal Blast Disease Detection in Rice Seed using Machine Learning,” IJACSA) International Journal of Advanced Computer Science and Applications, vol. 12, no. 2, 2021, [Online]. Available: www.ijacsa.thesai.org

M. A. Azim, M. K. Islam, M. M. Rahman, and F. Jahan, “An effective feature extraction method for rice leaf disease classification,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 19, no. 2, pp. 463–470, Oct. 2021, doi: 10.12928/TELKOMNIKA.v19i2.16488.

I. Alhabib, A. Faqih, and F. Dikananda, “Komparasi Metode Deep Learning, Naïve Bayes dan Random Forest untuk Prediksi Penyakit Jantung,” Informatics for Educators and Professionals, vol. 6, no. 2, pp. 176–185, Jun. 2022.

Y. Lai, “A Comparison of Traditional Machine Learning and Deep Learning in Image Recognition,” in Journal of Physics: Conference Series, Nov. 2019, vol. 1314, no. 1. doi: 10.1088/1742-6596/1314/1/012148.

M. F. Naufal, “Analisis Perbandingan Algoritma SVM, KNN, dan CNN untuk Klasifikasi Citra Cuaca,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 2, pp. 311–318, Mar. 2021, doi: 10.25126/jtiik.202184553.

V. K. Shrivastava, M. K. Pradhan, and M. P. Thakur, “Application of Pre-Trained Deep Convolutional Neural Networks for Rice Plant Disease Classification,” Proceedings - International Conference on Artificial Intelligence and Smart Systems, ICAIS 2021, pp. 1023–1030, Mar. 2021, doi: 10.1109/ICAIS50930.2021.9395813.

S. A. A. Ahmed, B. Yanikoglu, O. Goksu, and E. Aptoula, “Skin Lesion Classification with Deep CNN Ensembles,” 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings, Oct. 2020, doi: 10.1109/SIU49456.2020.9302125.

S. A. Wagle, R. Harikrishnan, J. Sampe, F. Mohammad, and S. H. Md Ali, “Effect of Data Augmentation in the Classification and Validation of Tomato Plant Disease with Deep Learning Methods,” Traitement du Signal, vol. 38, no. 6, pp. 1657–1670, Dec. 2021, doi: 10.18280/ts.380609.

W. M. Pradnya D and A. P. Kusumaningtyas, “Analisis Pengaruh Data Augmentasi Pada Klasifikasi Bumbu Dapur Menggunakan Convolutional Neural Network,” Jurnal Media Informatika Budidarma, vol. 6, no. 4, p. 2022, Oct. 2022, doi: 10.30865/mib.v6i4.4201.

J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, Mar. 2019, doi: 10.11989/JEST.1674-862X.80904120.

Shayan Riyaz, “Rice Leafs,” Kaggle, 2020. https://www.kaggle.com/datasets/shayanriyaz/riceleafs (accessed Oct. 19, 2022).

Vbookshelf, “Rice Leaf Diseases Dataset,” Kaggle, 2020. https://www.kaggle.com/datasets/vbookshelf/rice-leaf-diseases (accessed Oct. 19, 2022).

J. P. Shah, H. B. Prajapati, and V. K. Dabhi, “Rice Leaf Diseases Data Set,” 2017. https://archive.ics.uci.edu/ml/datasets/rice+leaf+diseases (accessed Oct. 19, 2022).

D. Efendi, Jasril, S. Sanjaya, F. Syafria, and E. Budianita, “Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi,” Jurnal Riset Komputer, vol. 9, no. 3, Jun. 2022.

G. Y. Alhafis, Jasril, S. Sanjaya, F. Syafria, and E. Budianita, “Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan EkstraksiCiri dan Convolutional Neural Network,” Jurnal Riset Komputer, vol. 9, no. 3, Jun. 2022.

H. Prayoga Angjaya, K. Gunadi, and R. Adipranata, “Pengenalan Penyakit Pada Tanaman Pokok di Indonesia Dengan Metode Convolutional Neural Network,” JURNAL INFRA, vol. 9, no. 2, 2021.

S. Khan, H. Rahmani, S. Afaq, A. Shah, and M. Bennamoun, A Guide to Convolutional Neural Networks for Computer Vision, vol. 8, no. 1. Australia: Morgan & Claypool, 2018.

Suyanto, Machine Learning Tingkat Dasar dan Lanjut. Bandung: Informatika Bandung, 2018.

D. Hindarto and H. Santoso, “Plat Nomor Kendaraan dengan Convolution Neural Network,” Jurnal Inovasi Informatika Universitas Pradita, vol. 6, no. 2, pp. 1–12, Sep. 2021.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Optimasi Convolutional Neural Network NASNetLarge Menggunakan Augmentasi Data untuk Klasifikasi Citra Penyakit Daun Padi

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.