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Abstract: This study presents the best fitting distribution to describe the siries MSI based on hourly rainfall form 

1970 to 2008 for three rain gauge stations in Peninsular Malaysia namely Bertam, Dungun and Pekan. Two three-

parameter extreme value distributions which are considered are Generalized Extreme Value (GEV) and Generalized 

Logistic (GL). The parameters of these distributions are determined using the Bayesian MCMC with non-

informative prior distribution and L-moments (LMOM) method. The Goodness-Of-Fit (GOF) between empirical 

data and theoretical distributions are then evaluated for each stations. The result show that the majority of the 

stations are found that the L-moment method can give the best modelling for MSI, specified for GEV distribution. 

Based on the model that has been identified, we can reasonably predict the risks associated the MSI for various 

return periods. 
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INTRODUCTION 

 

Statistical modeling of extreme event is important 

in various disciplines including hydrology, engineering 

and environmental science. For environmental 

processes extreme value theory can be used to estimate 

the probabilities of extreme levels of the processes. For 

some processes, such as sea-level and wind speed, this 

information can help in the design of structures such as 

sea walls, bridges and buildings. For other processes, 

such as rainfall and pollution, the information can be 

used to assess danger due to extreme levels of the 

process. Extreme value theory can be used in finance to, 

for example, assess the risks of large insurance claims 

or predict the probability of rare events.  

Extreme rainfall event is often associated with 

climate change, which may be followed by siries of 

natural disasters such as flash floods and landslides. 

Considering this phenomenon, the analysis of extreme 

rainfall data can be utilized for decision makers to set-

up measures for reducing or preventing the impact of 

disasters. In Malaysia, extreme analysis on rainfall data 

has been explored for all sorts of purposes such as 

tracing patterns and trends of daily rainfall during 

monsoon seasons (Suhaila et al., 2010a, 2010b), 

detecting recent changes in extreme rainfall events (Zin 

et al., 2010) and fitting probability distributions to 

annual maximum rainfalls by implementing various 

methods (Zin et al., 2009; Zawiah et al., 2009; Zin et 

al., 2010). 

Previous literatures provide a few methods of 

viewing Storm Event Analysis (SEA) in their analysis, 

among them (Eagleson, 1972; Adams et al., 1986; Guo 

and Adams, 1998a, 1998b; Adams and Papa, 2000; 

Rivera et al., 2005). The statistical characterization of 

Maximum Storm Intensity (MSI) will be analysis 

involves fitting two extreme values distributions which 

are considered are Generalized Extreme Value (GEV) 

and Generalized Logistic (GL). The estimation 

parameters of these distributions is determined using 

Bayesian with non-informative prior and L-moment.  

Bayesian inference is having a fundamental impact 

on virtually every statistical methodology. The 

Bayesian analysis has enormous potential for the 

various research fields. Especially, there are important 

literatures which dealt with the Bayesian approach in 
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the fields of water resources engineering (Coles and 

Powell, 1996; Kuczera and Parent, 1998). The most 

important step in the processes of the Bayesian method 

is the construction of the prior distribution. The prior 

distribution    represents    the    information    about  an  
uncertain parameter that is combined with the 
probability distribution of new data to yield the 
posterior distribution, which in turn is used for the 
future inferences and decisions involving parameter. 
The decision to use a particular prior distribution should 
be based on any available knowledge about the 
parameters. Estimated optimal values of the parameters 
from previous studies can be helpful for establishing the 
prior distribution and constraints on the model 
parameters. There are two types of prior distributions, 
‘Data-based prior distribution’ and ‘Non data-based 
prior distribution’. When the prior distribution is 
derived through the objective analysis using data, it is 
called   as   the  data-based   or   the  informative   prior  

distribution. Also, when it is derived from subjective 

judgments or theoretical considerations, it is called as 

the non-data-based prior distribution. Especially, the 

non-informative prior distribution is a special case of 

the non-data-based prior distribution. When the non-

informative prior distribution is used, the posterior 

distribution only reflects the information in the sample. 

One of the arguments to Bayesian statistics is the 

potential effect by the non-informative prior 

distribution. Jeffreys (1961) suggested that efforts for 

the elicitation of the informative prior distribution 

should be performed. While theoretical background to 

apply the non-informative prior distribution is plentiful 

(Bernado and Smith, 1994; Gelman et al., 1995; Carlin 

and Louis, 1996), there appeared to be a little literature 

in which the analysis is via the informative prior 

distribution in spite of the importance of the application 

with the informative prior distribution. 

 
Table 1: Main characteristics of the rain stations, SD standard deviation 

No. Station name Mean S.D. Coef of variation Kurtosis Skewness 

1 Bertam 24.41 7.5 0.31 1.13 4.27 
2 Dungun 20.46 7.87 0.38 1.39 5.39 

3 Pekan 23.64 8.28 0.35 1.57 6.82 

 S.D.: Standard deviation 

 

 
 
Fig. 1: Location of rain stations used in this study 

SOUTH CHINA SEA

STRAITS OF MELAKA
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Few are found information about external measures 

of Annual Maximum Storm Event (AMSE) in literature 

to the best of the authors’ knowledge. The main 

objective of this study is fitting distribution to describe 

the siries MSI based on hourly rainfall form 1970 to 

2008 for three rain gauge stations in Peninsular 

Malaysia namely Bertam, Dungun and Pekan. 

 

DATA AND DEFINITION OF STORM 

 

The data consisting of hourly rainfall data from 3 

rain gauge stations in Peninsular Malaysia from 1970 to 

2008 have been obtained from the Drainage and 

Irrigation Department. Data from these stations 

presented in Table 1. The locations of these six stations 

are shown in Fig. 1. 

The definition of storm-event depends greatly on 

the interevent time definition. The Inter-Event Time 

Definition (IETD) is defined as the minimum duration 

of dry period between two consecutive storm events. 

Hence, the dry duration between two individual storm 

events must at least be equal to the IETD value. If not, 

they  would  not  be  considered  as two different events  

 

but parts of the same storm. The IETD value is chosen 

such that the serial correlation between the two 

different storms is minimized (Restrepo-Posada and 

Eagleson, 1982). For small urban catchments, the IETD 

is usually taken as 6 h because the time concentration of 

rainfall which is less than 6 h would make the runoff 

response of successive storms to appear independent 

(Palynchuk and Guo, 2008). Storm depth is defined as 

the accumulated rainfall which begins and ends with at 

least one wet hour and either contains dry periods with 

less than 6 h or none at all. Storm duration is defined as 

the time interval for a storm event and storm intensity is 

the ratio of storm depth to storm duration. The 

information extracted from the rainfall data is the 

annual MSA, MSI and MSD. This information and 

definition of storm can be explained form Fig. 2. The 

annual MSA, MSI and MSD and Number of Storm 

(NS) for two rain gauge stations (Dungun and Bertam) 

are provided in Table 2. 

let ���  is jth rainfall (mm) on ith storm and ��  is duration �hour� on �th storm, for each storm the 

MSA, MSI and MSD was obtained from the hourly data 

as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Definition of storm 
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��� = rainfall �mm�, i = ith storm and j = rainfall of ith storm 
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Table 2: Annual number of storm (NS) and annual MSA, MSI and MSD for station Dungun and Bertam 

Years 

Dungun 
--------------------------------------------------------------------------- 

Bertam 
------------------------------------------------------------------------- 

NS MSA MSI MSD NS MSA MSI MSD 

1970 127 293.40 12.37 63 142 76.90 19.30 78 
1971 158 329.00 17.43 124 196 193.70 17.60 56 
1972 127 281.90 14.46 99 206 96.80 22.60 48 
1973 164 456.90 17.20 116 321 60.10 17.70 41 
1974 166 439.50 22.40 98 187 29.82 12.41 28 
1975 178 396.50 18.00 77 185 109.50 29.17 23 
1976 147 366.80 34.50 81 189 106.50 18.17 34 
1977 150 99.00 22.50 28 212 101.60 23.50 27 
1978 154 124.90 18.20 49 242 107.10 20.89 47 
1979 152 165.10 46.50 58 193 48.00 38.50 27 
1980 165 279.50 18.00 72 197 93.10 36.50 132 
1981 135 124.50 24.90 72 173 80.40 21.49 51 
1982 100 445.80 10.00 163 165 244.80 48.50 133 
1983 146 414.00 26.50 72 187 54.50 23.00 24 
1984 165 241.90 19.50 204 208 224.90 21.25 53 
1985 168 215.90 14.60 59 183 86.50 18.38 24 
1986 140 916.00 17.00 127 168 115.50 18.25 36 
1987 175 225.90 41.50 51 167 138.10 30.00 50 
1988 187 887.80 29.50 82 197 224.80 19.12 50 
1989 127 192.00 29.50 128 210 57.50 21.50 34 
1990 148 192.50 21.38 68 110 90.30 15.76 49 
1991 150 327.20 20.00 71 210 143.50 26.50 36 
1992 158 265.60 19.50 101 167 147.10 15.50 76 
1993 166 196.10 13.50 49 194 283.40 38.50 90 
1994 142 348.40 19.50 125 203 98.40 16.88 37 
1995 127 219.20 12.77 70 192 125.00 23.17 44 
1996 148 301.00 11.60 87 199 159.50 34.75 46 
1997 142 126.00 20.00 48 158 99.00 24.50 35 
1998 180 109.00 22.47 43 177 153.50 24.38 79 
1999 245 192.25 11.92 55 223 111.40 25.97 48 
2000 198 325.50 20.42 61 161 130.50 28.25 27 
2001 156 431.60 15.62 88 125 116.50 29.12 16 
2002 99 125.70 14.30 24 133 78.00 20.00 22 
2003 160 244.50 22.23 17 166 105.50 28.50 47 
2004 145 261.00 22.50 52 161 259.00 19.62 63 
2005 156 231.00 17.57 110 200 153.00 28.00 57 
2006 148 221.00 25.00 79 161 165.50 32.00 80 
2007 143 295.80 24.37 96 209 205.00 20.04 91 
2008 90 106.40 8.77 60 122 89.50 22.75 31 

 

MSD = Maximum ����, � = 1,2,3  

MSA = Maximum �∑ ������� !, � = 1,2,3 

MSI = Maximum "∑ #�$%�$&'�� ( , � = 1,2,3 

 

METHODOLOGY 

 

Probability distribution: The most common analysis 

of extreme hydrological events involves the use of 

annual maximum or annual extreme. When 

constructing the MSI series for each year in the record 

is selected; hence, the series obtained would have a 

length equal to the number of years. Many works that 

apply the annual maximum series usually involve 

fitting of a probability model to the rainfall data. 

Thereafter, several researchers have provided useful 

applications of annual maximum distributions to 

rainfall data obtained from different regions of the 

world. 

Two probability distributions associated with 

modeling extreme events, GEV and GL are considered 

in this study. The probability density function, 

probability function and quantile function for each 

distribution that we consider are as given in Table 3, 

where x denote the observed values of the random 

variable representing the event of interest, α is the scale 

parameter, ε is the location parameter and κ is the shape 

parameter.  

In order to fit a particular theoretical distribution to 

the observed distribution of AMSE, parameters are 

estimated using the Bayesian MCMC and LMOM 

method. 

 

Bayesian MCMC with non-informative prior 

distribution: This section introduces the idea of 

Bayesian MCMC using non-informative priors. 

Suppose that prior beliefs about θ can be formulated 

and expressed by a probability density function π(θ) 

with no reference to the data. The likelihood for θ is 

( )xL θ . The prior information and the likelihood can be 

combined using Bayes theory to produce a posterior 

distribution for θ as follows: 
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Table 3: List of distributions used in this study 

Distribution  Probability density function, f(x) Cumulative distribution, F(x) Quantile function, Q (F) 

GEV )��� = *+ ,�-.−�1 − 0�1 − ,�-�−1�2 
  

with 1 = 3−0+ 456.1 − 0�� − 7� *⁄ 2,    0 ≠ 0�� − 7� *⁄ ,                               0 = 0 ; 
 −∞ < � < 7 + * 0  )5> 0 > 0 ⁄   −∞ < � < ∞ )5> 0 = 0  
  7 + * 0 ≤ � < ∞ )5> 0 < 0⁄ . 

 A��� =

BCD
CE ,�- F− G1 − HI �� − J�K'LM , �) 0 ≠ 0

,�- "−,�- G−  I �� − J�K( , �) 0 = 0
;  

 

 N�A� = J +  H O1 −
−4�A0  

GL )��� = *+ ,�-.−�1 − 0�12
O1 + ,�-�−1�PQ  

with   

 

1 = 3−0+ 456.1 − 0�� − 7� *⁄ 2,   0 ≠ 0�� − 7� *⁄ ,                                 0 = 0; 
−∞ < � < 7 + * 0   )5> 0 > 0 ⁄  −∞ < � < ∞ )5> 0 = 0 7 + * 0 ≤ � < ∞ )5> 0 < 0⁄  

 

A��� = F1 + G1 − 0 �#+RI !K'LM+ 
  

 

 N�A� = J + IH �1 − � +SS !H!  

 

( ) ( ) ( ) ( ) ( )∫= θθθπθθπθπ dxLxLx  

 

Often, the function of an extreme value analysis is 

to describe the extremal behavior of an observed 

process in order to find the probability of extreme 

events occurring in the future. Within the Bayesian 

framework, prediction is possible through the predictive 

distribution. Let y denote a future observation with 

probability density function f(y|θ), then: 

 

( ) ( ) ( ) θθπθ dxyfxyf ∫=  
 

Is the predictive distribution of y given x. So, if 

suitable prior distribution can be specified, there are 

good reasons to choose Bayesian procedures. The 

difficulty in computing the integral in predictive 

distribution makes the simulation techniques such as 

MCMC can be overcome to simulate realizations of the 

posterior distribution. The main issue in Bayesian 

MCMC with non-informative prior distribution is the 

priors are constructed by assuming there is no 

information available about the process apart from data. 

In this study the prior density was chosen to be: 

 

( ) ( ) ( ) ( )κπξπφπκξφπ κξα=,,
 

( ) ( ) ( ),10,0~,1000,0~,100,0~,logwith NandNN κξφαφ =
 

The variances are chosen large enough to make the 

distribution almost flat, corresponding to prior 

ignorance and the posterior density is: 

 

( ) ( ) ( )yLy κξφκξφπκξφπ ,,,,,, ∞
 

( )
( ) ( )κξφκξφ

κξφ

,,~,,,~

,,,where

GLyandGEVy

likelihoodisyL
 

 

The full details of the algorithm are as follows: 

1. Initialize the chain a ( )0000 ,, κξφθ =  and the couter 

at j = 1 

2. Put ( ) ( )4,0~,1* Nj

φφ ωωφφ += −  

3. Accept ( ) *φφ =j  with probability 

( )( ) { }Aa j ,1min, *1 =− φφ  where 

 
( ) ( )( )

( ) ( ) ( )( )111

11*

,

,

−−−

−−

=
jjj

jj

A
κξφπ

κξφπ  and ( ) ( )1−= jj φφ  otherwise 

4. Put ( ) ( )3.0,0~,1* Nj

ξξ ωωξξ += −  

5. Accept ( ) *ξξ =j  with probability 

( )( ) { }Aa j ,1min, *1 =− ξξ  where 

( ) ( )( )
( ) ( ) ( )( )11

1*

,

,

−−

−

=
jjj

jj

A
κφξπ

κφξπ
 and ( ) ( )1−= jj ξξ  otherwise 

6. Put ( ) ( )1.0,0~,1* Nj

κκ ωωκκ += −  

7. Accept 
( ) *κκ =j

 with probability 
( )( ) { }Aa j ,1min, *1 =− κκ  where 

 
( ) ( )( )

( ) ( ) ( )( )jjj

jj

A
ξφκπ

ξφκπ

,

,

1

*

−
=  and ( ) ( )1−= jj κκ  otherwise 

8. Increase counter from j to j + 1 and return to step 2 

 

L-moment (LMOM) and Goodness-Of-Fit (GOF): 
The LMOM method, populared by Hosking and Wallis 
(1997), is widely applied in the field of applied research 
such as hydrology, meteorology and civil engineering 
for estimating parameters of a distribution. It is based 
on a linear combination of order statistics where the 
first- until the fourth-order statistics correspond to 
measures of location, scale, skewness and kurtosis, 
respectively. When compared to maximum likelihood 
methods and method of moments, estimators found 
based on LMOM are more robust, proven to have 
smaller mean square error and easier to compute. As 
described by Vogel and Fennessey (1993), LMOM 
should be preferred for small sample sizes due to its 
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robust property. The rth LMOM, denoted as TU is 
defined as: 
 

 TU =  U ∑ �−1�VU+ V�W OU+ V PX�YU+V:U�;  > = 1,2 

 
where, YU+V:U is the random variable variable for �> − \� th order statistics.  

Once the distribution of the observed values is 
determined for MSI series, the expected frequencies 
under the assumed distribution are computed for each 
station. The most appropriate distribution for each 
station is identified using results found based on several 
goodness-of-fit tests.  

Three GOF tests considered are Relative Root 
Mean Square Error (RRMSE), Relative Absolute 
Square Error (RASE) and Probability Plot Correlation 
Coefficient (PPCC). The first two methods involve the 
assessment on the difference between the observed  
values and the expected values under the assumed  
distribution  while  the third method involves measuring  

the correlation between the ordered values and the 

associated expected values. The formulas for the tests 

are: 

 

 ]]^_X = ` � ∑ �#�:%+ab�S��#�:% !Q��� ]c_X =
∑ d#�:%+ab�S��#�:% d��� eeff =

∑ �#�:%+#̅��ab�S��+ah�S��!%�&'
`∑ �#�:%+#̅�i%�&' `∑ �ab�S��+ah�S��!i%�&'

 

 

where, ��:� is observed values for ith order statistics of 

random sample of size n, Nh�A�� =  � ∑ Nb��� �A�� is the estimated quantile values 

associated with Gringorton plotting position A�. If 

RRMSE and RASE are used to compare the models, the 

smallest value of RRMSE and RASE will indicate best 

fitting distribution. However, when PPCC test is used,

 

 
 

(a) 
 

 
 

(b) 

 

 

 

(c) 
 
Fig. 3: Trace plots of the GEV parameters using MCMC for station rainfall; (a): Bertam; (b): Dungun; (c): Pekan 
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(g) 

 

 
 

(h) 

 

 
 

(i) 

 
Fig. 4: Posterior densities of the GEV parameters using MCMC for station rainfall; (g): Bertam; (h): Dungun; (i): Pekan  

 

the model with the computed PPCC value closest to 1 is 
the best. 

 

RESULTS 

 

The parameters in the two probability distributions, 

the GEV distribution and the GL distribution, are 

estimated using L Moment and the Bayesian MCMC 

with the random walk chain algorithm.  

In the case of LMOM, The rth LMOM, denoted as TU can be solved using the simple mathematic to obtain 

estimates of parameters for GEV and GL distribution 

and in Bayesian framework the algorithm in 3.2 can be 

used to obtain parameters. 

Hourly rainfall data for six rain gauge stations will 

be analyzed by algorithm in 3.2. In each case 30000 

iterations of the algoritm were carried out. The MCMC 

trace plots and estimated posterior densities for GEV 

and GL parameters for six rain gauge are given in Fig. 3 

to 6, respectively. To check that chains had converged 

to the correct place, the same algorithm was carried out 

using the various starting points. The chains for the six 

sites all converged very well within the first 10000 

iterations. Therefore, it can be suggested that the 

developed proposal distribution works well. 

The result of the parameter estimation at six rain 

gauge station using GEV and GL distributions are 

summarize in Table 4. In the Table 4, the posterior 

means of Bayesian MCMC and the value of LMOM are 

very similar to each other regardless of the rain gauge 

stations and probability distributions. Therefore, it is 

suggested that the Bayesian MCMC has no advantage 

over the LMOM. However, from the point of the 

uncertainty, the Bayesian MCMC is more meaningful 

than the LMOM. Therefore, it is suggested that the 

Bayesian MCMC exhibits an advantage over the 

LMOM when the quantification of the uncertainty in 

the parameters is required. 
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(a1) 

 

 

 

(b2) 

 

 

 

(c1) 

 

Fig. 5: Trace plots of the GLO parameters using MCMC for station rainfall; (a1): Bertam; (b1): Dungun; (c1:) Pekan

 

 
(g1) 

 
(h1) 

0 5000 10000 15000 20000 25000 30000

1
0

1
5

2
0

2
5

Trace plot (ξ)

0 5000 10000 15000 20000 25000 30000

1
2

3
4

5
6

7

Trace plot (α)

0 5000 10000 15000 20000 25000 30000

-0
.6

-0
.4

-0
.2

0
.0

Trace plot (κ)

0 5000 10000 15000 20000 25000 30000

1
0

1
5

2
0

2
5

0 5000 10000 15000 20000 25000 30000

1
2

3
4

5
6

7

0 5000 10000 15000 20000 25000 30000

-0
.6

-0
.4

-0
.2

0
.0

0 5000 10000 15000 20000 25000 30000

1
0

1
5

2
0

2
5

0 5000 10000 15000 20000 25000 30000

2
4

6
8

0 5000 10000 15000 20000 25000 30000

-0
.8

-0
.6

-0
.4

-0
.2

0
.0

10 15 20 250
.0
0

0
.1
0

0
.2
0

0
.3
0

Posterior density (ξ)

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

Posterior density (α)

-0.6 -0.4 -0.2 0.0

0
1

2
3

4

Posterior density (κ)

10 15 20 250
.0
0

0
.1
0

0
.2
0

0
.3
0

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

-0.8 -0.6 -0.4 -0.2 0.0

0
1

2
3

4



 

 

Res. J. Appl. Sci. Eng. Technol., 13(4): 283-294, 2016 

 

291 

 
 

(i1) 
 

Fig. 6: Posterior densities of the GLO parameters using MCMC for station rainfall; (g1): Bertam; (h1): Dungun; (i1): Pekan 

 
Table 4: Posterior means by MCMC and L-moment for the GEV and GLO parameters for each station rainfall 

Station  

Bayes 
----------------------------------------------------------------------------- 

L-mom 
-------------------------------------------------------------------------------

GEV 
------------------------------------ 

GLO 
------------------------------------ 

GEV 
------------------------------------ 

GLO 
--------------------------------------

ξ α κ ξ α κ Ξ α κ ξ α κ 

Bertam 20.97 5.78 -0.06 22.99 4.01 -0.25 20.78 5.37 -0.09 22.91 3.73 -0.23 
Dungun  16.97 5.99 -0.07 19.12 4.04 -0.23 16.81 5.57 -0.07 19.01 3.84 -0.22 
Pekan 19.86 6.05 -0.10 22.15 4.28 -0.27 19.83 5.85 -0.07 22.13 4.02 -0.22 

 
Table 5: Comparison of performance of MCMC versus L-moment under different GOF for GEV and GLO distributions 

  
Station 

GOF Bayes 
----------------------------------------------------------------------------- 

GOF L-mom 
-------------------------------------------------------------------------------

GEV 
------------------------------------ 

GLO 
------------------------------------ 

GEV 
------------------------------------ 

GLO 
--------------------------------------

RRMSE RASE PPCC RRMSE RASE PPCC RRMSE RASE PPCC RRMSE RASE PPCC 

Bertam 0.06 0.04 0.99 0.08 0.04 0.96 0.05 0.03 0.98 0.06 0.03 0.97 
Dungun 0.07 0.05 0.99 0.08 0.04 0.97 0.06 0.04 0.99 0.06 0.04 0.98 
Pekan 0.07 0.05 0.99 0.09 0.05 0.98 0.04 0.03 1.00 0.05 0.04 0.99 

 
Comparing with the results of the GEV distribution and 
GL distributions using numerical GOF from Table 5, it 
can be concluded that for all GOF tests, the MSI of the 
six rain gauge stations follow a Generalized Extreme 
Value (GEV) distribution. When the performance of the 
methods of estimation are compared under a particular 
GOF test based on the proportion of time where one is 
better than the other, it is found that the LMOM is more 
superior than the Bayesian MCMC for all the three type 
of GOF tests considered. These results are summarized 
in Table 5. 
 
Return period: Based on the best-fitted models, we 
can calculate the return values of the periods 10, 50 and 
100 years for six rain gauge stations, by substituting the 
vectors of observations from the marginal posterior 

distributions of α, ε and κ into quantile function in 
Table 3, for 0 < F < 1, samples from the posterior 
distribution of return levels can be obtained. This 
procedure was carried out for p = 0.1, 0.5, 0.01, to 
obtain the posterior distributions of the 10, 50 and 100-
year return levels. Plot the posterior densities of the 10, 
100 and 1000-year return levels for six rain gauge 
station using Bayesian MCMC for GEV and GL 
distribution are given in Fig. 7 and 8 respectively. 

Due to the positive skew of the posterior 
distributions, seen in Fig. 7 and 8, the posterior medians 
are considered to be more suitable measures of location 
than the posterior means. Posterior medians and value 
of return period using LMOM for the three return levels 
for each rain gauge are given in Table 6. In Table 6, 
with the exception of rain gauge stations Seremban and
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Fig. 7: 10, 50 and 100-year return period for station rainfall; (m): Bertam; (n): Dungun; (o): Pekan 
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Fig. 8: 10, 50 and 100-year return period for station rainfall; (m1): Bertam; (n1): Dungun; (o1): Pekan using MCMC (GLO 

distribution 

20 30 40 50 600
.0
0

0
.0
5

0
.1
0

0
.1
5

50 100 1500
.0
0

0
.0
2

0
.0
4

0
.0
6

50 100 150 200 250 3000
.0
0
0
.0
1
0
.0
2
0
.0
3
0
.0
4
0
.0
5

20 40 60 800
.0
0

0
.0
4

0
.0
8

0
.1
2

50 100 150 200 250 3000
.0
0

0
.0
2

0
.0
4

0
.0
6

0 100 200 300 400 5000
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

20 30 40 500
.0
0

0
.0
4

0
.0
8

0
.1
2

Posterior density RP 10-year

20 40 60 80 1000
.0
0

0
.0
2

0
.0
4

Posterior density RP 50-year 

50 100 1500
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4 Posterior density RP 100-year 

20 30 40 500
.0
0

0
.0
4

0
.0
8

0
.1
2

20 40 60 80 100 1200
.0
0

0
.0
2

0
.0
4

50 100 1500
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

10 20 30 40 50 60 700
.0
0

0
.0
4

0
.0
8

0
.1
2

50 100 150 200 2500
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0 100 200 300 4000
.0
0
0

0
.0
1
0

0
.0
2
0

0
.0
3
0



 

 

Res. J. Appl. Sci. Eng. Technol., 13(4): 283-294, 2016 

 

293 

Table 6: Comparison of performance of MCMC versus L-moment under different return period for GEV and GLO distributions 

Station 

Return period bayes 

------------------------------------------------------------------------------- 

 Return Period L-mom 

---------------------------------------------------------------------------------
GEV 

-------------------------------------- 

GLO 

-------------------------------------- 

GEV 

-------------------------------------- 

GLO 

----------------------------------------

10-year 50-year 100-year 10-year 50-year 100-year 10-year 50-year 100-year 10-year 50-year 100-year 

Bertam 35.00 46.42 51.59 34.58 48.83 56.66 34.20 45.95 51.47 33.58 46.40 53.38 
Dungun 31.51 43.41 48.82 30.61 44.38 51.89 30.45 41.98 47.30 29.82 42.51 49.32 

Pekan 35.17 48.61 55.00 34.90 51.22 60.50 34.10 46.13 51.65 33.44 46.68 53.78 

 
Sungai Pinang, the posterior medians of the return 
levels are all higher than the LMOM estimates, 
particularly for the 50 and 100-year return levels, it 
seem to be more sensible estimates for the return levels 
than LMOM estimates. This is due to the large 
difference between the posterior mean of κ and the 
maximum likelihood estimates of κ. 

 
CONCLUSION 

 
In this study, the occurrence probability of the 

annual Maximum Storm Intensity (MSI) events was 

analyzed at the six rain gauge stations, in Peninsular 

Malaysia. The two probability distributions, the GEV 

distribution and the GL distribution, were selected to fit 

of the data. The two types of data in this study were 

analyzed by LMOM and the Bayesian MCMC, 

specially for estimate the parameters of the two 

probability distributions. In this study could be showed 

that the Bayesian MCMC worked well and efficient 

with the non informative prior distribution in this study 

by checking of the acceptance rate. From the results of 

the parameter estimation and quantile estimation, it was 

seen that the Bayesian MCMC had no advantage over 

the LMOM when the median or mean value was 

required. However, in the aspect of the uncertainty 

analysis, the Bayesian MCMC could remarkably reduce 

the range of the uncertainty. The reduction of the 

uncertainty in the results of the frequency analysis may 

not always give a good description for the all the cases. 

Also, Bayesian analysis cannot always provide the 

reduction of the uncertainty. Especially, if we have 

much information such as large sample size for the 

defining the unknown parameters, the influence of the 

uncertainty is relatively weak to determine a specific 

decision. However, if we have a little information, the 

analysis of the uncertainty has a strong influence on the 

final selection of the parameters. Therefore, the 

reduction of the uncertainty in the frequency analysis 

with the extreme event such as the rare rainfall event in 

this study can provide the meaningful description. 
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