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Abstract: - Air pollution is a problem that concerns many of us all over the world and it is a negative side effect 
of industrial development. Air pollution from cars and factories, in conjunction with a very humid climate, 
produce a highly corrosive environment. Land transportation provide a significant contribution to  half of the 
total emission of PM2.5, CO, HC and NOx, where air pollution levels have been exceeded or almost exceeded 
the ambient air quality standard. This study determine the distributional fit of carbon monoxide (CO) data 
obtained from Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi from 16 
September 2008 to 16 January 2009. The distribution models used in this study were exponential, gamma, 
generalized extreme value, lognormal and Weibull distributions. Parameters for all distribution models were 
estimated by using maximum likelihood method. The goodness of fit of the models were determined by using 
Kolmogorov-Smirnov and Anderson Darling statistics. The lognormal distribution model was found to fit better 
than other distribution models.  
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1 Introduction 
The air pollution problem primarily concerns 
industrialized countries. However it also has significant 
impact on countries in the developing world that are 
making steady growth with their industrial 
development. The main source of air pollution in urban 
environments is transportation activities especially 
from motor vehicles. Land transportation provide a 
significant contribution to half of the total emission of 
PM2.5, CO, HC and NOx, where air pollution levels 
have been or exceeded almost ambient air quality 
standard [1]. 

In this study, we fitted five statistical models to 
CO data. The distribution models used in this study 
were exponential, gamma, generalized extreme 
value, lognormal and Weibull distributions. 
 
 
2 Carbon Monoxide (CO) Data 
This CO data was obtained from SERI, Universiti 
Kebangsaan Malaysia, Bangi. Observations were 
taken every minute starting from 16 September 2008 
to 16 January 2009. However, in this study the data 
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used was the average data in each hour. Figure 1 below 
is the average CO index in each hour.   
 
 

The average CO index in each hour
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Fig. 1 The average CO index in each hour 

 
 

3 Statistical Models 
 
3.1 Exponential distribution                   
Exponential distribution is one of the simplest 
statistical distribution. It is characterized by λ  the only 
parameter. The probability density function (pdf) for 
this exponential distribution is given in the equation 
below,  

( ) xf x e λλ −=                       (1) 
 

The cumulative distribution function (cdf) for this 
distribution function is shown below, 

( ) 1 xF x e λ−= −                      (2) 
 

where 0x ≥  is the CO index data (in this study) and 
0λ >  is the parameter [7,10]. The maximum 

likelihood estimator for the parameter λ  is defined by 
equation (3), 
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where n is the total number of observations. 
 
3.2 Gamma distribution 
The probability density function (pdf) for this 
distribution is given by  

( ) ( ) ( ) ( )1 expf x x xγλ λ λ
γ

−= −
Γ

                 (4) 

It  is characterized by two parameters and they are γ  
and λ . The cumulative distribution function (cdf) for 
this distribution function is, 

        ( ) ( )
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where 0x ≥  is the CO index data (in this study), 

0γ >  is a shape parameter, 0λ >  is a scale 
parameter and ( )γΓ  is the gamma function [7,10]. 

The maximum likelihood estimator for the shape 
and scale parameters are defined by the equations 
(6) and (7) shown below  [4,7]: 
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3.3 Generalized extreme value distribution 
The generalized extreme value distribution is a 
flexible three parameter model that combines the 
Gumbel, Frechet dan Weibull maximum extreme 
value distribution [8]. The probability density 
function (pdf) for this distribution is given by (8), 
 

( ) ( )( ) ( )( ) ( )
11

1
1exp 1 1

k kx xf x k kλ λ
δ δ δ

−− −    = − − −     
 (8) 

 
for 0k ≠ ; and for 0k = : 
 

( ) ( )( ) ( )( )( )1exp exp expx xf x λ λ
δ δ δ

− − = −           (9) 

 
The parameter for this distribution are k , δ  and λ . 
The cumulative distribution function (cdf) is:  
 

( ) ( )( )
1

exp 1 , 0
kxF x k for kλ

δ
−  = − − ≠   

  (10) 

 

( ) ( )( )exp exp , 0xF x for kλ
δ

−  = − − =  
    (11) 

 
where 0x ≥  is the CO index data, 0k >  is a shape 
parameter, 0δ >  is a scale parameter and 0λ >  is 
a location parameter. 

According to [8], the probability weighted 
moments estimator for the shape, scale and location 
parameters are defined by the equations shown 
below, 
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where q  is a quantile, jm  is a weighted moments. 
 
 
3.4  Lognormal distribution 
The lognormal distribution is specified by the two 
parameters, µ  and 2σ .  The probability density 
function (pdf) for this distribution is: 
  

( ) ( )( )2
21 1

2 2exp lnxf x xσ π σ µ−  = −          (17) 

 
where 0x ≥  is the CO index data, 0µ >  is the mean 
and 0σ >  is the standard deviation of the lognormal 
distribution [7,10]. 

The maximum likelihood estimator for the shape 
and scale parameters are defined by the equation 
shown below [4,7]: 
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3.5  Weibull distribution 
The Weibull distribution is a generalization of the 
exponential distribution. The name of this distribution 
was taken from the name of the Swedish physicist, 
Wallodi Weibull. This distribution has been used in 
many studies, such as in the study of human disease 
mortality. Weibull distribution is specified by two 
parameters α  and β . The probability density function 
(pdf) for this distribution is  
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1
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               (20) 

The cumulative distribution function (cdf) is: 

( ) 1 exp xF x
β

α

  = − −  
   

              (21) 

where 0x ≥  is the CO index data, 0β >  is a shape 
parameter and 0α >  is a scale parameter [12]. 

The maximum likelihood estimator for the shape 
and scale parameters are defined by the equations 
(22) and (23) below [12]: 
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where ix  are the generated data sample and n the 
total number of sample in the data set. 
 
 

4   4 Parameter Estimation 
Parameters for all distribution models were 
estimated using statistical software such as S-Plus, 
Easyfit and SYSTAT. The methods of estimation 
used were maximum likelihood and probability 
weighted moments. The results were shown in Table 
2 below. 
 
 
5 Goodness of Fits Test  
In general, the goodness of fit test described here 
rely on the relation of the empirical distribution 
function of the observations to the hypothesized 
distribution function. The distributional fit of CO 
data were determined by using Kolmogorov-
Smirnov test statistics Dn and Anderson-Darling test 
statistics AD. Both were nonparametric test that 
calculated based on the cumulative distribution 
function (cdf) and the probability density function 
(pdf) of a continuous variable. The hypothesis test 
for goodness of fit will reject H0 if the p-value for 
confidence interval at 90% falls below some critical 
value [14]. 
 
 
5.1 Kolmogorov-Smirnov statistics  
This test statistic calculate the maximum vertical 
distance between the empirical and hypothetical cdf. 
It is applied on the assumption that a theoretical 
continuous cdf is completely specified with known 
parameters. It is defined as in equation (24) below  
 

( ) ( )0supn n
x

D F x F x= −         (24) 
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where ( )nF x  and ( )0F x  are the empirical and 

theoretical continuous cdf, respectively, nD  is the 

maximum vertical distance between ( )nF x  and 

( )0F x . The random variable x is representing (CO 

data). The minimum the value of  nD  statistic, the 
better is data fits to the distribution [14]. 
 
 
5.2 Anderson-Darling statistics  
Anderson-Darling has suggested the following 
equation  
 

( ) ( ) ( ){ }0 0 12

1

2 1 ln ln 1n i n i

i

i F x F x
A n

n
− +

=

 − + − = − −∑   (25) 

where 1 1, , ,i i n ix x x+ − +  are the observations in 

increasing order and ( )0F x  are the empirical and 
theoretical continuous cdf. A smaller value of AD 
statistic gives the best distribution fit to the data [14]. 
 
 
 
 
6 Result and Discussion 
 
6.1 Descriptive statistics 
The histogram shown in Fig. 2 below is the frequency 
plots of the average CO index of each hour at the 
station in Universiti Kebangsaan Malaysia, Bangi. 

Based on this Figure 2, it can be seen that the data is 
skewed to the right, so the five distribution functions 
above can be used to model CO data. The descriptive 
statistics for the data is shown in Table 1 below. 
 
 

Table 1.  Descriptive statistics for CO data index 
 

Parameter Statistics 
Mean 5.3470 
Standard deviation 5.1781 
98th percentile 20.7880 
Minimum 0.16 
Maximum 46.15 
Kurtosis 10.473 
Skewness 2.484 

 
Base on the above table, it can be seen that the mean 
CO index is 5.3470 ppm. The standard CO index is 10 
ppm, this condition show that the average CO index is 
below the standard CO index harmful to human body. 

The standard deviation for CO index is 5.1781 and 
the 98th percentile is 20.7880. The minimum index is 
0.16 and maximum is 46.15. The skewness and 
kurtosis for the data are 2.484 and 10.473 
respectively. So, the distribution is skewed to the 
right.   

 
 

6.2 Probability distribution functions  
The results of the analysis can be seen in Table 2. 
The parameter for all distribution models were 
estimated by using either maximum likelihood or 
probability weighted moments. The estimated 
parameter values of each distribution are shown 
below. 
 

Table 2 
Parameters value for the distribution models 

Distribution Parameter 
Exponential 0.18702λ =  
Gamma 1.0663γ =  

5.0146λ =  
Gen. Extreme Value 0.26195λ =  

2.6579δ =  
2.895k =  

Lognormal 1.2538µ =  

0.9759σ =  
Weibull 1.286α =  

5.4679β =  
 
The plot shown in Fig.2 is the probability density 
function (pdf) for exponential, gamma, generalized 
extreme value, lognormal and Weibull. A 
comparison between each plot, where all plot have 
skewness that leads to the right. This plot shows that 
all of the probability density function (pdf) is 
consistent with the results of the skewness 
calculated for CO index data. This plot show that the 
distribution models fit of CO index data 
approximately the lognormal distribution model. 
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Table 3  The goodness of fit test statistics for each 
distribution models 

 
Distribution Kolmogorov

-Smirnov 
Anderson-

Darling 
Exponential 0.06739 10.539 
Gamma 0.05395 6.8528 
Gen.Extreme Value 0.04607 4.756 
Lognormal 0.03674 2.8478 
Weibull 0.05713 7.8657 

 
 
Table 3 shows the goodness of fit test statistics for all 
distribution models. Based on the table above the 
values for Dn and AD is minimum for lognormal 
distribution (Dn=0.03674 and AD=2.8478). This shows 
that the lognormal distribution is the best fit for CO 
index data compared with the other distributions. 
 
 
7   Conclusion 
This study was carried out to determine the 
distributional fit of carbon monoxide (CO) data 
obtained from Solar Energy Research Institute (SERI), 
Universiti Kebangsaan Malaysia, Bangi from 16 
September 2008 to 16 January 2009. The five statistical 
distributions used were exponential, gamma, 
generalized extreme value, lognormal and Weibull 
distributions. The goodness of fit test of Kolmogorov-
Smirnov and Anderson-darling statistics were used to 
determine the distribution models fit of CO data. The 
results shows that the lognormal distribution models is 
the best fit for CO index data than other distribution 
models. 
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