Analisis Sentimen Mengenai Penggunaan E-Wallet Pada Google Play Menggunakan Lexicon Based dan K-Nearest Neighbor
|
Abstract
E-Money is an innovative renewal that comes from developments in the field of technology. The impact of covid-19 is reportedly increasing. Influence of e-money has a very big impact on the digital marketing process so that a digital wallet application was created (e-wallet). On google play lots of applications e-wallet which has a high download rate. Then the reviews from users must also be calculated because there are applications that match the number of downloads and have similar ratings, which makes the application title with the best category less relevant. Existing reviews are usually used by companies to getfeedback from the community regarding the application. this comment contains hundreds to millions, it will be difficult to do it manually. One way to analyze existing comments is to use sentiment analysis. Sentiment analysis in this study uses lexicon based and k-nearest neighbors. Dictionary lexicon which is used is vader to provide labels automatically and k-nearest neighbor used for classification. The purpose and intent of the research is to find out how the community's response is classified regarding the three applications, and to find out the accuracy value of the implementation lexicon based and k-nearest neighbors on each other e-wallet. The results of the study stated that Dana got the highest accuracy of 78% on the k = 6 test, Ovo got the highest accuracy of 75.33% on the k = 9 test, and LinkAja got the highest accuracy of 73.5% on the k = 8 test. Applications that have many positive responses from users is linkaja as many as 6037 positive reviews.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 177 timesPDF - 66 times
References
B. Filemon, V. C. Mawardi, and N. J. Perdana, “Penggunaan Metode Support Vector Machine Untuk Klasifikasi Sentimen E-Wallet,” J. Ilmu Komput. dan Sist. Inf., vol. 10, no. 1, 2022.
Anjelina, “Persepsi Konsumen Pada Penggunaan E-Money,” J. Appl. Manag. Account., vol. 2, no. 2, pp. 219–231, 2018.
U. Nuha, M. N. Qomar, and R. A. Maulana, “Perlukah E-Wallet Berbasis Syariah?,” MALIA J. Islam. Bank. Financ., vol. 4, no. 1, p. 59, 2020.
S. A. Saputra, D. Rosiyadi, W. Gata, and S. M. Husain, “Google Play E-Wallet Sentiment Analysis Using Naive Bayes Algorithm Based on Particle Swarm Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 377–382, 2019.
A. B. P. Siti Masturoh, “Sentiment Analysis Against the Dana E-Wallet on Google Play Reviews Using the K-Nearest Neighbor Algorithm,” Ejournal.Nusamandiri.Ac.Id, pp. 53–58, 2020.
N. Tri Romadloni, I. Santoso, and S. Budilaksono, “Perbandingan Metode Naive Bayes, Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl Commuter Line,” J. IKRA-ITH Inform., vol. 3, no. 2, pp. 1–9, 2019.
Y. Azhar, “Metode Lexicon-Learning Based Untuk Identifikasi Tweet Opini Berbahasa Indonesia,” J. Nas. Pendidik. Tek. Inform., vol. 6, no. 3, p. 237, 2018.
S. Pamungkas, J. Budi Darmawan, F. Sains dan Teknologi, and U. Sanata Dharma, “Klasifikasi Sentiment Tweet Pelanggan IndiHome Selama Pandemi Covid-19 Menggunakan Algoritma Multinomial Naive Bayes,” SNESTIK Semin. Nas. Tek. Elektro, pp. 339–344, 2022, [Online]. Available: https://ejurnal.itats.ac.id/snestikdanhttps://snestik.itats.ac.id.
P. A. Sumitro, Rasiban, D. I. Mulyana, and W. Saputro, “Analisis Sentimen Terhadap Vaksin Covid-19 di Indonesia pada Twitter Menggunakan Metode Lexicon Based,” J-ICOM - J. Inform. dan Teknol. Komput., vol. 2, no. 2, pp. 50–56, 2021.
R. Enggar Pawening, W. Ja, and F. Shudiq, “KLASIFIKASI KUALITAS JERUK LOKAL BERDASARKAN TEKSTUR DAN BENTUK MENGGUNAKAN METODE k-NEAREST NEIGHBOR (k-NN),” COREAI J. Kecedasan Buatan, Komputasi dan Teknol. Inf., vol. 1, no. 1, pp. 10–17, 2020.
A. M. Zuhdi, E. Utami, and S. Raharjo, “ANALISIS SENTIMENT TWITTER TERHADAP CAPRES INDONESIA 2019 DENGAN METODE K-NN,” vol. 5, 2019.
A. ; Halimi and M. Rudyanto Arief, “Analisis Sentimen Masyarakat Indonesia Terhadap Pembelajaran Online Dari Di Media Sosial Twitter Menggunakan Lexicon Dan K-Nearest Neighbor,” J. Kecerdasan Buatan, Komputasi dan Teknol. Inf., vol. 2, no. 1, pp. 18–28, 2021.
M. W. A. Putra, Susanti, Erlin, and Herwin, “Analisis Sentimen Dompet Elektronik Pada Twitter Menggunakan Metode Naïve Bayes Classifier,” IT J. Res. Dev., vol. 5, no. 1, pp. 72–86, 2020.
J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF - IDF dan K - Nearest Neighbor,” J. Intell. Syst. Comput., no. September, pp. 43–49, 2019.
D. S. Chandra, Mardji, and Indriati, “Aplikasi Berbasis M-KNN untuk Mendukung Keputusan Perekrutan Pemain yang Sesuai dengan Kebutuhan Tim Sepakbola,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 6, pp. 2051–2057, 2018.
A. Pariyandani, D. A. Larasati, E. P. Wanti, and Muhathir, “Klasifikasi Citra Ikan Berformalin Menggunakan Metode K-NN dan GLCM,” Pros. Semin. Nas. Teknol. Inform., vol. 2, no. 1, pp. 42–47, 2019.
N. Nur, Asmawati, and N. Syahra, “Perbandingan Metode k-NN dan Naïve Bayes dalam Klasifikasi Penentuan Calon Pendonor Darah,” J. Comput. Inf. Syst. ( J-CIS ), vol. 1, no. 1, pp. 21–28, 2021.
H. A. R. Harpizon and R. Kurniawan, “Analisis Sentimen Komentar Di YouTube Tentang Ceramah Ustadz Abdul Somad Menggunakan Algoritma Naïve Bayes,” vol. 5, no. 1, pp. 131–140, 2022.
R. I. Pristiyanti, M. A. Fauzi, and L. Muflikhah, “Sentiment Analysis Peringkasan Review Film Menggunakan Metode Information Gain dan K-Nearest Neighbor,” vol. 2, no. 3, pp. 1179–1186, 2018.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Mengenai Penggunaan E-Wallet Pada Google Play Menggunakan Lexicon Based dan K-Nearest Neighbor
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Nurul Habibah, Elvia Budianita, Muhammad Fikry, Iwan Iskandar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURIKOM (Jurnal Riset Komputer)
Di publikasikan oleh P3M - STMIK BUDI DARMA
Email: jurikom.stmikbd@gmail.com
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Attribution 4.0 International.