PAPER•OPEN ACCESS

1st International Conference of Education on Sciences, Technology, Engineering, and Mathematics (ICE-STEM)

To cite this article: 2018 J. Phys.: Conf. Ser. 948011001

You may also like
(Invited) Gender Bias in STEM Workplaces Roberta Rincon

How to Apply Technology in STEM Education Activities Artnarong Manosuttirit

The effectiveness of implementing projectbased learning (PjBL) model in STEM education: A literature review N Diana, Yohannes and Y Sukma

View the article online for updates and enhancements.

243rd Meeting with SOFC-XVIII
Boston, MA • May 28 - June 2, 2023
Early registration discounts end April 24!
Accelerate scientific discovery!

Proceeding of $1^{\text {st }}$ International Conference of Education on Science, Technology, Engineering, and Mathematics (ICE-STEM)

Proceeding of $1^{\text {st }}$ International Conference of Education on Science, Technology, Engineering, and Mathematics (${ }^{\text {st }}$ ICE-STEM) 2017

Preface

Science, Technology, Engineering, and Mathematics (STEM) has become a remarkable headline in todays' world. It is an educational program developed to prepare students in improving competitiveness in the fields of science, technology, engineering, and mathematics. It aims to foster inquiring minds, logical reasoning, and collaboration skills. Mathematics as the queen of science can support the blooming STEM for better education in the $21^{\text {st }}$ century. Mathematics pervades every part of our dynamic lives. To succeed in this new information-based and highly technological society, developing mathematics proficiency is the inevitable consequence. Hence, the role of mathematics in STEM development is essential. It is needed a forum to discuss the role of mathematics in STEM development. Therefore, the First International Conference of Education on Science, Technology, Engineering, and Mathematics (ICE-STEM) held and took place in Jakarta on October $17^{\text {th }}-19^{\text {th }}, 2017$. The conference was organized by University of Muhammmadiyah Prof. DR. Hamka (UHAMKA) in collaboration with Indonesian Mathematical Society (Indo-MS).

There were 186 participants from countries all over the world attended the conference. The scientific program consisted of in total 136 talks, a big part of them presented in 15 mini-symposia. Four talks were invited plenary lecturers given by Budi Nurani Ruchjana (Indonesia), Somporn Chuai-Aree (Thailand), Kamisah Osman (Malaysia), and Imam Robandi (Indonesia). Topics included pure and applied mathematics, science, technology engineering, and science, technology, engineering, and mathematics education.

We would like to express our appreciation to many people who contributed to the success of the conference: the plenary and keynote speakers, the authors, the participants, the session chairs, and the members of the Committees who nominated plenary and keynote speakers. The editors are especially grateful to those who reviewed the manuscripts included in this special issue.

The Editors

Yoppy Wahyu Purnomo
Liszulfa Roza
Tian Abdul Aziz
Krisna Satria Perbowo
Syafika Ulfah

Table of contents

Volume 948
2018
Previous issue Next issue
1st International Conference of Education on Sciences, Technology, Engineering, and Mathematics (ICE-STEM) 17-19 October 2017, Jakarta, Indonesia
Accepted papers received: 18 December 2017
Published online: 19 February 2018

Open all abstracts

Preface

Papers

The effect of creative problem solving on students'

 mathematical adaptive reasoningA Muin, S H Hanifah and F Diwidian

Development of geometry materials based on scientific approach for junior high school students

Nurafni, R D Siswanto and E Azhar
Open abstract View article PDF

OPEN ACCESS
012003
Non-linear learning in online tutorial to enhance students' knowledge on normal distribution application topic

Kartono, D Suryadi and T Herman
Open abstract View article PDF

OPEN ACCESS
 012004

Improving mathematical problem solving skills through visual media

S A Widodo, Darhim and T Ikhwanudin
Open abstract
View article
PDF

OPEN ACCESS
012005
Improving students' creative mathematical reasoning ability students through adversity quotient and argument driven inquiry learning

W Hidayat, Wahyudin and S Prabawanto
Open abstract View article PDF

OPEN ACCESS
Pre-service mathematics teachers' reasoning ability in solving mathematical non-routine problem according to cognitive style

A Faradillah, W Hadi and A Tsurayya
Open abstract View article PDF

Characteristics of students in comparative problem solving

M Irfan, Sudirman and R Rahardi
Open abstract View article PDF

OPEN ACCESS
012008
Correlation among science process skill, concept comprehension, and scientific attitude on regulation system materials P M Sari, F Sudargo and D Priyandoko
Open abstract
View article
PDF

OPEN ACCESS
The influence of mathematics learning using SAVI
approach on junior high school students' mathematical modelling ability

H Khusna and N Y Heryaningsih
View article
PDF

Fulfilling the law of a single independent variable and improving the result of mathematical educational research

H Pardimin and N Arcana
Open abstract View article PDF

OPEN ACCESS
The effect of ice-breaking using stand-up comedy on students' mathematical belief system

M D Kurniasih, D H Lenaldi and Wahidin

$$
\text { Open abstract } \quad \text { View article } \quad \text { PDF }
$$

Task design for improving students' engagement in mathematics learning

H Wilujeng

Developing self-concept instrument for pre-service mathematics teachers

M W Afgani, D Suryadi and J A Dahlan
Open abstract View article PDF

OPEN ACCESS
012015
Pre-service mathematics teachers' ability in solving wellstructured problem

R Paradesa

Open abstract
View article
PDFability in mathematics based on gender perspective

Kowiyah and I Mulyawati

Open abstract
View article
PDF

Development of syntax of intuition-based learning model in solving mathematics problems

Nok Yeni Heryaningsih and Hikmatul Khusna
Open abstract View article PDF

open access

Student teachers' mathematical questioning and courage in metaphorical thinking learning

H Hendriana, W Hidayat and M G Ristiana
Open abstract View article PDF

OPEN ACCESS
The effect of team accelerated instruction on students' mathematics achievement and learning motivation

Agustina Sri Purnami, Sri Adi Widodo and Rully Charitas Indra Prahmana
Open abstract View article PDF

OPEN ACCESS

012021
The effect of discovery learning and problem-based learning on middle school students' self-regulated learning

A Miatun and Muntazhimah
Open abstract
View article
PDF

Enhancing students' mathematical problem posing skill through writing in performance tasks strategy

Kadir, R Adelina and M Fatma
Open abstract View article PDF

Developing entrepreneurship ability of pre-service mathematics teachers through GSSM
 E E Rohaeti, M Afrilianto and R B Primandhika
 Open abstract View article PDF

OPEN ACCESS
012024
Affective strategies, attitudes, and a model of speaking performance development for engineering students

S Wijirahayu and P Dorand
Open abstract
View article
PDF

OPEN ACCESS

012025
Contextual approach using VBA learning media to improve students' mathematical displacement and disposition ability

Siti Chotimah, M Bernard and S M Wulandari
Open abstract View article PDF

OPEN ACCESS
Cloning of gene-encoded stem bromelain on system
coming from Pichia pastoris as therapeutic protein candidate
Y Yusuf and W Hidayati
Open abstract
View article
PDF

OPEN ACCESS
Laminar flow rate analysis on plate with stokes theorem
D Amirudin and T I Hartini
OPEN ACCESS 012029Students' thinking styles and their proof writing levelsRisnanosanti and Ristontowi
Open abstract View article PDF
OPEN ACCESS 012030
The application of vector concepts on two skew lines
F Alghadari, Turmudi and T Herman
Open abstract View article PDF
OPEN ACCESS012031Enhancing students' critical thinking skills through criticalthinking assessment in calculus courseZulfaneti, S Edriati and MukhniPromoting middle school students' mathematical creativethinking ability using scientific approachA Istiqomah, K S Perbowo and S E Purwanto

Assessment of statistical education in Indonesia:
Preliminary results and initiation to simulation-based inference
K V I Saputra, L Cahyadi and U A Sembiring

Pre-service teachers' challenges in presenting mathematical problems

R Desfitri

Open abstract
View article
PDF

open access	
Analysis of students' mathematical reasoning	012036

Sukirwan, Darhim and T Herman
Open abstract View article PDF

OPEN ACCESS
012037
Promoting students' mathematical problem-solving skills through 7e learning cycle and hypnoteaching model

H Saleh, D Suryadi and J A Dahlan
Open abstract View article PDF

OPEN ACCESS
Improving students' mathematical representational ability
012038 through RME-based progressive mathematization

Warsito, Darhim and T Herman
Open abstract View article PDF

OPEN ACCESS
Interactive design for self-study and developing students' critical thinking skills in electromagnetic radiation topic

D Ambarwati and A Suyatna
Open abstract
View article
PDF

Introducing geometry concept based on history of Islamic geometry

S Maarif, Wahyudin, A Raditya and K S Perbowo
Open abstract View article PDF
OPEN ACcess
Measuring metacognitive ability based on science literacy
in dynamic electricity topic
Warni, Sunyono and Rosidin
Open abstract \quad View article PDF

OPEN ACCESS
012042
Cabri 3D - assisted collaborative learning to enhance junior high school students' spatial ability

Muntazhimah and A Miatun

Open abstract
View article
PDF

OPEN ACCESS
012043
Differences between quadratic equations and functions:
Indonesian pre-service secondary mathematics teachers' views
TA Aziz, P Pramudiani and Y W Purnomo
Open abstract View article PDF

OPEN ACCESS
012044
Dienes AEM as an alternative mathematics teaching aid to enhance Indonesian students' understanding of algebra concept S Soro, S Maarif, Y Kurniawan and A Raditya

Open abstract View article PDF

Developing learning material of introduction to operation research course based on problem-based learning

PDF

OPEN ACCESS

The effect of Missouri mathematics project learning model on students' mathematical problem solving ability

I Handayani, R L Januar and S E Purwanto
Open abstract
View article
PDF

OPEN ACCESS
012047
Improving students' mathematical critical thinking through rigorous teaching and learning model with informal argument H Hamid

Open abstract View article PDF

OPEN ACCESS
012048
The influence of Missouri mathematics project on seventh grade students' mathematical understanding ability

S Rezeki, A A Setyawan and S Amelia
Open abstract
View article
PDF

Mobile learning to improve mathematics teachers mathematical competencies

A Hendrayana and Wahyudin

Designing students' worksheet based on open-ended approach to foster students' creative thinking skills

S Romli, Abdurrahman and B Riyadi

Promoting middle school students' abstract-thinking ability through cognitive apprenticeship instruction in mathematics learning B G P Yusepa, Y S Kusumah and B G Kartasasmita

Open abstract View article PDF

OPEN ACCESS
012052
Developing CORE model-based worksheet with recitation task to facilitate students' mathematical communication skills in linear algebra course

Risnawati, S Khairinnisa and A H Darwis
Open abstract View article PDF

Indicators that influence prospective mathematics teachers representational and reasoning abilities

Darta and J Saputra
Open abstract View article PDF

OPEN ACCESS
012054
Development of instrument for assessing students' critical and creative thinking ability

R Herpiana and U Rosidin
Open abstract
View article
PDF

Developing material for promoting problem-solving ability through bar modeling technique

N Widyasari and H Rosiyanti
Higher-order thinking skill problem on data representation in primary school: A case study
R I I Putri and Z Zulkardi
Open abstract View article PDF

OPEN ACCESS

012057
Arithmetic learning with the use of graphic organiser
F L Sai, M Shahrill, A Tan and S H Han
Open abstract View article PDF
OPEN ACCESS
012058
Models to support students' understanding of measuring area of circles
S Rejeki and R I I Putri
Open abstract View article PDF
OPEN ACCESS
012059
Logical errors on proving theorem
C K Sari, M Waluyo, C M Ainur and E N Darmaningsih
Open abstract View article PDF
OPEN ACCESS
012060
Students' errors in solving combinatorics problems observed from the characteristics of RME modeling
I Meika, D Suryadi and Darhim
Open abstract View article PDF
open access
012061
Differential item functional analysis on pedagogic and content knowledge (PCK) questionnaire for Indonesian teachers using RASCH model

B D Rahmani

Potential characteristics that relate to teachers mathematics-related beliefs

Y W Purnomo, T A Aziz, P Pramudiani, S Darwis and D Suryadi
Open abstract View article PDF

OPEN ACCESS
An algorithm for finding a similar subgraph of all Hamiltonian cycles

R Wafdan, M Ihsan and D Suhaimi
Open abstract View article PDF

OPEN ACCESS
012064
Interactive graph constructing on graph theory application development

Dairina, M Ihsan and M Ramli
Open abstract View article PDF

Connectivity algorithm with depth first search (DFS) on simple graphs

O Riansanti, M Ihsan and D Suhaimi

$$
\text { Open abstract } \quad \text { View article } \quad \text { PDF }
$$

Understanding resistant effect of mosquito on fumigation strategy in dengue control program

D Aldila, N Situngkir and K Nareswari
Open abstract
View article
PDF
Advection-diffusion model for the simulation of air
Open abstract View article PDF

open access	012068
Modeling the stock price returns volatility using	
$\operatorname{GARCH}(1,1)$ in some Indonesia stock prices	

S A Awalludin, S Ulfah and S Soro
Open abstract View article PDF

OPEN ACCESS

M P Lawiyuniarti, E Rahmadiantri, I M Alamsyah and G Rachmaputri
PDF

Proof of the effect of electric current on function of tara calor using total derivative

Y Soenarto, A Kusdiwelirawan, A Fitriana, I R Ermawaty and V M A Sari
Open abstract View article PDF

OPEN ACCESS

Some cycle-supermagic labelings of the calendula graphs
T R Pradipta and A N M Salman
Open abstract View article PDF

OPEN ACCESS

Sample size and power calculation for univariate case in quantile regression

Ferra Yanuar

OPEN ACCESS

The determination of the tribe of family members in Luhak Limopuluh Koto, West Sumatera Indonesia

S Bahri, A Abbas and N N Bakar
Open abstract View article PDF

Linear systems on balancing chemical reaction problem
R A Kafi and B Abdillah

Open abstract View article PDF

OPEN ACCESS
Application of multi response optimization with grey relational analysis and fuzzy logic method

Sri Winarni and Sapto Wahyu Indratno
Open abstract View article PDF

OPEN ACCESS
012076
Ethnomathematics: The use of multiple linier
regression $\boldsymbol{Y}=\boldsymbol{b}_{1} \boldsymbol{X}_{1}+\boldsymbol{b}_{2} \boldsymbol{X}_{2}+\boldsymbol{e}$ in traditional house construction Saka
Roras in Songan Village
J B Darmayasa, Wahyudin and T Mulyana
Open abstract
View article
PDF

Data mining for dengue hemorrhagic fever (DHF) prediction with naive Bayes method

Ria Arafiyah and Fariani Hermin

New method in muon-hadron absorption on
$\mathrm{Th}_{\mathrm{x}} \mathrm{DUO}_{2}$ nano material structure at 561 MHz quantum gyro-magnetic

M Hardiyanto and I R Ermawaty
Open abstract View article PDF

Proceeding of $1^{\text {st }}$ International Conference of Education on Science, Technology, Engineering, and Mathematics
 ($1^{\text {st }}$ ICE-STEM) 2017

General Chair
Drs. Slamet Soro, M.Pd (Department of Mathematics Education, Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)

Advisory Committee

Assoc. Prof. Dr. Intan Muchtadi-Alamsyah. Institut Teknologi Bandung, Indonesia
Prof. Dr. Hans-Stefan Siller, Universitat Koblenz-Landau, Germany
Assoc. Prof. Tole Sutikno, Universitas Ahmad Dahlan, Indonesia
Prof. Anton Satria Prabuwono, Ph.D., King Abdul Aziz University, Arab Saudi
Prof. Dr. Khairurrijal, Institut Teknologi Bandung, Indonesia
Dr. Wanty Widjaja, Deakin University, Australia

Scientific Committee / Reviewers

Dr. Rattikan Saelim (Prince of Songkla University, Thailand)
Dr. Ridwan Maulana (University of Groningen, Netherlands)
Dr. Somporn Chuai-Aree (Prince of Songkla University, Thailand)
Dr. M. Shahrill (Universiti Brunei Darussalam, Brunei)
Dr. Liszulfah Roza, M.I.S. (Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)
Prof. Dr. Agus Suryanto (Universitas Brawijaya, Indonesia)
Tian Abdul Aziz, Ph.D. (Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)
Prof. Dr. (Eng.) Imam Robandy MT. (Institut Teknologi Surabaya, Indonesia)
Dr. Yoppy Wahyu Purnomo (Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)
Dr. Ervin Azhar, S.Si. M.Si. (Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)
Assoc. Prof. Dr. Kiki A. Sugeng (Universitas Indonesia, Indonesia)
Dr. Budi Akbar, M.Si. (Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)
Dr. Sigid Edy Purwanto, M.Pd. (Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)
Harry Ramza, MT., Ph.D. (Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)
Yuli Rahmawati, Ph.D. (Universitas Negeri Jakarta, Indonesia)
Dr. Dan Mugisidi, MT. (Universitas Muhammadiyah Prof. DR. HAMKA, Indonesia)

Public Relation \& Secretarial Staffs

Supiat, M.Pd.
Luthfi Sapahi, M.Pd.
Gufron Amirullah, M.Pd.
Sulaiman, S.Pd.
Ambar Nugraheni, M.Pd.
Nurlina Rahman, S.Pd., M.Si.

Ceremony

Dr. Ishaq Nuriadin, M.Pd.
Isnaini Handayani, M.Pd.
Puri Pramudiani, S.Pd., M.Sc.
Drs. M. Soenarto, M.Si.
Abdurrahman Jupri, M.Pd.
Syarif Hidayatullah, M.Pd.
Bitha Dwi Rahmani, M.Pd.

Fundrisers \& Sponsorship

Yunda Kurniawan, M.Pd.
Muntazhimah Nasution, M.Pd.
Drs. H. Hartono, M.Pd

Wira Adi Nugroho, S.Pd, M.Si
Hendrik, S.Pd
Faris Ning Hasan, S.Pd

Logistic

Ayu Tsurayya, S.Pd., M.Si.
Leni Marlena, S.Stat., M.Si.
Musriana Retnaningsih, M.Pd.
Hikmatul Husna, M.Pd.
Asih Miatun, M.Pd.
Nok Yeni Heryaningsih
Nurafni, M. Pd., M.Pd.
Windia Hadi, M.Pd.

Papers \& Publications

Dr. Yoppy Wahyu Purnomo
Dr. Liszulfah Roza, M.I.S.
Tian Abdul Aziz, Ph.D.
Subhan Azis Awalludin, S.Pd, M.Sc
Syafika Ulfah, S.Pd, M. Sc
Krisna Satrio Perbowo, M.Pd.
Trisna Roy Pradipta, S.Pd., M.PMat.

Website Development

Dr. Sugema, M.Kom
Benny Hendriana, M.Pd.
Risqi Rahman, M.Pd.
Khoerul Umam, M.Pd.
Mirzanur Hidayat, M.Si.

Presentation \& Program

Dr. Budi Akbar, M.Si.
Dr. Acep Kusdiwelirawan, M.Pd.
Dra. Imas Ratna, M.Sc
Dra. Maryanti Setianingsih, M.Pd
Kowiyah, M.Pd
Felicianda, S.Pd., M.Si.
Accomodation \& Supporting Team
Samsul Maarif, M.Pd.
Sukirno, S.Ag.
Edi Supriadi, S.Pd.
Devi Anugrah, M.Pd.
Musodik, M.Pd.

International Conference of Education on Science, Technology, Engineering and Mathematics
Jakarta 17-19 Oktober 2017
Website : ice-stem.uhamka.ac.id

LIST OF RECOMMENDED PAPER FOR BEING PUBLISHED IN

JOURNAL OF PHYSICS: CONFERENCE SERIES (IOP)

No.	CODE	AUTHOR NAME	AFFILIATION	PAPER TITLE
1	ABS-5	Reza Wafdan (a,c), Mahyus Ihsan (b^{*}, c), Dedi Suhaimi	NON UHAMKA	An Algorithm For Finding A Similar Subgraph Of All Hamiltonian Cycles
2	ABS-6	Dairina (a), Mahyus Ihsan (b^{*}, c), Marwan Ramli (a)	NON UHAMKA	Interactive Graph Drawing On Graph Theory Application Development
3	ABS-7	Oky Riansanti (a,b), Mahyus Ihsan ($\left.a^{*}, b\right)$, Dedi Suhaimi (a,b)	NON UHAMKA	Connectivity Algorithm With Depth First Search (DFS) On Simple Graphs
4	ABS-10	Fiki Alghadari (a^{*}), Turmudi (b) and Tatang Herman (b)	NON UHAMKA	The Application Of Vector Concepts On Two Skew Lines
5	ABS-12	Zulfaneti (a^{*}), Sofia Edriati (a), Mukhni (b)	NON UHAMKA	The Development Of Students' Critical Thinking Skills Through Implementation Of Critical Thinking Assessment Instruments In Calculus Subject
6	ABS-14	Dipo Aldila, Novita Situngkir, Kinanthi	NON UHAMKA	Understanding Resistant Effect of Mosquito to Fumigation Strategy in Dengue Control Program
7	ABS-18	Risnanosanti	NON UHAMKA	Students Thinking Styles And Their Proof Writing Levels
8	ABS-19	$\begin{aligned} & \text { Rizky Oktaviana Eko } \\ & \text { Putri } \end{aligned}$	NON UHAMKA	Investigating Students' Understanding About Mathematical Concepts Through Concept Maps
9	ABS-20	Widya Dwiyanti ($\left.a^{*}\right)$, Eva Triwahyuni (b)	NON UHAMKA	Mathematics Lesson Plan Based On Problem Posing Approach In Scientific Method
10	ABS-25	Sukirwan(a), Darhim(b), T. Herman (b)	NON UHAMKA	Quality Analysis Of Students Mathematical Reasoning
11	ABS-29	H Saleh1, D Suryadi2, J A Dahlan2	NON UHAMKA	The Enhancement Of Students' Mathematical Problem Solving Skill Through 7E Learning Cycle Under Hypnoteaching Model
12	ABS-35	Kie Van Ivanky Saputra, Lina Cahyadi, Ukur Arianto Sembiring	NON UHAMKA	Implementation Of A Randomization-Based Curriculum For Introductory Statistics At UPH And Across Indonesia
13	ABS-37	Made Putri Lawiyuniarti, Elvira Rahmadiantri, Intan Muchtadi-Alamsyah, and Gantina Rachmaputri	NON UHAMKA	Application Of Least-Squares Ellipse And Hyperbola For Two Dimensional Data
14	ABS-41	Hasan Hamid	NON UHAMKA	Students' Mathematical Critical Thinking Through Rigorous Teaching And Learning (RTL) Model By Using Informal Argument

Organized by

Workshop of Mathematics, 1st floor of Building C
Faculty of Teacher Training and Education, University of Muhammadiyah Prof. DR. HAMKA JL. Tanah Merdeka, Rambutan, Pasar Rebo, Jakarta Timur, DKI Jakarta, Indonesia

International Conference of Education on Science, Technology, Engineering and Mathematics
Jakarta 17-19 Oktober 2017
Website : ice-stem.uhamka.ac.id

15	ABS-42	Warsito1), Darhim2), Tatang Herman3)	NON UHAMKA	Improving Student's Mathematical Representation Ability Through Progressive Mathematization With Realistic Mathematics Education
16	ABS-44	Yunika Lestaria Ningsih, Retni Paradesa	NON UHAMKA	Improving Students' Understanding Of Mathematical Concept Ability By Using Maple In Learning
17	ABS-45	Desih Ambarwati, Agus Suyatna	NON UHAMKA	ESB Interactive Design Of Radiation Electromagnetic For SelfStudy And Increasing Students' Critical Thinking Skills
18	ABS-47	Warni (a^{*}), Sunyono (b), Undang Rosidin (b)	NON UHAMKA	Metacognition Ability Instruments Based On Science Litercy In Materials Dynamic Electricity
19	ABS-49	Rita Desfitri	NON UHAMKA	The Challenges That Pre-Service Teachers Face In Posing Mathematical Problems: Hidden Errors And Unrealistic Cases
20	ABS-53	Yerizon, Jazwinarti, Yarman	NON UHAMKA	Needs Analysis For Developing Learning Material Of Introduction To Operational Research Lecture Based On Problem Based Learning
21	ABS-55	Kadir, Rika Adelina, Moria Fatma	NON UHAMKA	Enhancing The Students' Mathematical Problem Posing Skill Through Writing In Performance Tasks (Wipt) Strategy
22	ABS-56	Rahmat Mushlihuddin1, a), Nurafifah2, b) and Irvan3, c)	NON UHAMKA	The Effectiveness Of PBL Model In The Student's Ability Mathematics Problems Solving On Vector Analysis
23	ABS-59	Maifalinda Fatra	NON UHAMKA	Implementation Of K13 On Mathematics Teaching And Learning In Improving Student Critical Thinking Ability
24	ABS-61	Abdul Muin, Siti Heni Hanifah, Femmy Diwidian	NON UHAMKA	The Effect Of Creative Problem Solving On The Students' Mathematical Adaptive Reasoning
25	ABS-69	Kartono(1), Didi Suryadi(2), Tatang Herman(2)	NON_ UHAMKA	Non-Linear Learning In Online Tutorial To Enhance Students Understanding On Normal Distribution Application Topic In Statistical Education Course
26	ABS-72	sri adi widodo; Darhim; Trisno Ikhwanudin	NON UHAMKA	Improving Skills Problem Solving In Mathematics With Media
27	ABS-73	Wahyu Hidayat (a*), Wahyudin (b), Sufyani Prabawanto (b)	NON UHAMKA	Improvement Of Creative Mathematical Reasoning Ability Students Influenced By Adversity Quotient And Argument Driven Inquiry Learning
28	ABS-76	Muhammad Irfan, Sudirman, Rustanto Raharjo	NON_ UHAMKA	Characteristics Of Students In Comparative Problem Solving
29	ABS-79	H. Pardimin and I Nyoman Arcana	NON UHAMKA	How To Fulfill The Law Of A Single Independent Variable On Quasi-Experimental Method And Improving The Generalization Of The Result Of Mathematical Educational Research
30	ABS-82	Khairunnisa	NON UHAMKA	Task Design For Binding Activities Of Students And Teachers
31	ABS-84	Hestu Wilujeng	NON UHAMKA	Analysis Self Determination Of Students In Learning Mathematics
32	ABS-86	angga hidayat	NON UHAMKA	Student's Self-Concept Profiles In Problem Posing According To Cognitive Styles Developing An Evidence Base For Best Practice

Organized by

Workshop of Mathematics, 1st floor of Building C
Faculty of Teacher Training and Education, University of Muhammadiyah Prof. DR. HAMKA JL. Tanah Merdeka, Rambutan, Pasar Rebo, Jakarta Timur, DKI Jakarta, Indonesia

International Conference of Education on Science, Technology, Engineering and Mathematics
Jakarta 17-19 Oktober 2017
Website : ice-stem.uhamka.ac.id

				Of E-Learning In Mathematical Economics Course At Pamulang University
33	ABS-88	Muhammad Win Afgani, Didi Suryadi, Jarnawi Afgani Dahlan	NON UHAMKA	Developing Of Self Concept Instrument For Undergraduate Students Of Mathematics Education
34	ABS-89	Retni Paradesa	NON UHAMKA	Mathematical Problem-Solving Ability Of Undergraduate Students In Solving Well-Structured Problem
35	ABS-92	Agustina Sri Purnami (1); Sri Adi Widodo (1); Rully Charitas Indra Prahmana (2)	NON UHAMKA	Team Accelerated Instruction On Achievement And Motivation Learning
36	ABS-93	Siti Chotimah1) Martin Bernard2) Sukma Murni Wulandari3)	NON UHAMKA	Implementation Of Contextual Approach To Assist Vba Learning Media Application For Excel To Improve The Ability Of Mathematical Displacement And Disposition Students
37	ABS-95	Euis Eti Rohaeti (a^{*}), M. Afrilianto (b), Restu Bias Primandhika (b)	NON UHAMKA	Developing The Mathematical Entrepreneurship Ability Of Mathematic Education Students Through Gerakan STKIP Siliwangi Mengajar
38	ABS-96	Ferra Yanuar	NON UHAMKA	Violation Of Normal Assumption With Bayesian Quantile Regression Method
39	ABS-98	Armiati1, Reni Oktaviani Hersika2	NON UHAMKA	Trigonometry Learning Device Based Guided Discovery For High School Students Of Class X
40	ABS-100	Heris Hendriana (a^{*}), Wahyu Hidayat (b), Muhammad Ghiyats Ristiana (c)	NON UHAMKA	Student Teachers' Mathematical Questioning And Courage In Metaphorical Thinking Learning
41	ABS-112	Susila Bahri (a^{*}), Ardi Abbas (b), Nova Noliza Bakar (c)	NON UHAMKA	Application Of Matrix Algebra To Determine Matrilineal Society Tribes
42	ABS-116	Beni Yusepa, G.P., Yaya S. Kusumah, Bana G. Kartasasmita	NON UHAMKA	The Achievement Of Student' Mathematical Abstraction Ability In Junior High School Using Cognitive Apprenticeship Instruction
43	ABS-131	Risnawati, Septika Khairinnisa, Alfina Hadiarti Darwis	NON UHAMKA	The Development Of Students' Worksheet Based CORE Model With Recitation Task To Facilitating Students' Mathematical Communication Skills In Linear Algebra Course
44	ABS-132	Rahmat AI Kafi (a*), Bariqi Abdillah (b)	NON UHAMKA	Linear Systems On Balancing Chemical Reaction Problem
45	ABS-133	Desy Ayu Nurasyiyah (a^{*}), Utari Sumarmo (b)	NON UHAMKA	Attaining Ability Of Connection, Problem Solving, And SelfEfficacy With Metacognitive Approach To Junior High School Students
46	ABS-142	Darta1, a) and Saputra, J 1, b)	NON UHAMKA	The Ability Of Representation, Reasoning Mathematical, And The Indicators That Influence It On The Mathematics Prospective Teachers
47	ABS-143	RIA HERPIANA, UNDANG ROSIDIN	NON UHAMKA	Development Of Assessment Instruments To Measure Critical And Creative Thinking Ability Of Students

Organized by

Workshop of Mathematics, 1st floor of Building C
Faculty of Teacher Training and Education, University of Muhammadiyah Prof. DR. HAMKA JL. Tanah Merdeka, Rambutan, Pasar Rebo, Jakarta Timur, DKI Jakarta, Indonesia

International Conference of Education on Science, Technology, Engineering and Mathematics
Jakarta 17-19 Oktober 2017
Website : ice-stem.uhamka.ac.id

48	ABS-144	Nurbaiti Widyasari (a), Hastri Rosiyanti (b)	NON UHAMKA	Material Development Of The Problem Solving Ability Through Bar Modelling Technique
49	ABS-145	Sri Rezeki, Andoko Ageng Setyawan, Sindi Amelia	NON UHAMKA	The Influence Of Missouri Mathematics Project (MMP) Towards' Mathematical Understanding Ability Of Seventh Grade Students In Pekanbaru
50	ABS-148	Sri Winarni1,a), Sapto Wahyu Indratno2, b)	NON UHAMKA	Application Of Multi Response Optimization With Grey Relational Analysis And Fuzzy Logic Method
51	ABS-152	Ratu Ilma Indra Putri, Zulkardi	NON UHAMKA	Higher-Order Thinking Skill Problem On Data Representation In Primary School: A Case Study
52	ABS-156	Aan Hendrayana; Wahyudin	NON UHAMKA	Mobile Learning To Improve Mathematical Competence Of Mathematics Teachers
53	ABS-158	Sai Fung Lyn (a), Masitah Shahrill (b*), Abby Tan (c), Sau Herng Han (d)	NON UHAMKA	Arithmetic Learning With The Use Of Graphic Organiser
54	ABS-164	Sri Rejeki (a*), Ratu IIma Indra Putri (b), Yusuf Hartono (b)	NON UHAMKA	Models To Support Students' Understanding Of Area Measurement Of Circles
55	ABS-168	Sunaryo Romli (a^{*}), Abdurrahman (a), and Beli Riyadi (a)	NON UHAMKA	Designing The Open Ended-Based Physics Worksheet In Fostering Students' Creative Thinking Skills
56	ABS-171	Jero Budi Darmayasa, Wahyudin, Tatang Mulyana	NON UHAMKA	ETHNOMATHEMATICS: The Use Of Multiple Linier Regression Y=B1x1 + B2x2 + E In Traditional House Construction Saka Roras In Songan Village
57	ABS-172	Christina Kartika Sari, Mohamad Waluyo, Citra Maharani Ainur, Eka Nurhayati Darmaningsih	NON UHAMKA	Logical Errors On Proving Theorem
58	ABS-173	Ika Meika1, Didi Suryadi2, Darhim3	NON UHAMKA	Students' Errors In Solving Combinatorics Problems Observed From The Characteristics Of RME Modelling
59	ABS-178	Fariani Hermin Indiyah, Ria Arafiyah	NON UHAMKA	Data Mining For Dengue Hemorrhagic Fever Rediction (Dhf) With Naive Bayes Method
60	ABS-3	Y. Soenarto	UHAMKA	Theoretical Calculation of The Binding Energy of An Atoms Total Based on The Thomas-Fermi Method
61	ABS-27	Syafika Ulfah (a^{*}), Subhan Ajiz Awalludin (a), Wahidin (a)	UHAMKA	Advection - Diffusion Model For The Simulation Of Air Pollution Distribution From A Point Source Emission
62	ABS-30	Tian Abdul Aziz	UHAMKA	Differences Between Quadratic Equations And Functions: Indonesian Pre-Service Secondary Mathematics Teachers' Views
63	ABS-31	Subhan Ajiz Awalludin; Syafika Ulfah; Slamet	UHAMKA	Modelling The Stock Price Returns Volatility Using GARCH (1,1) In Some Indonesia Stock Prices

Organized by

Workshop of Mathematics, 1st floor of Building C
Faculty of Teacher Training and Education, University of Muhammadiyah Prof. DR. HAMKA JL. Tanah Merdeka, Rambutan, Pasar Rebo, Jakarta Timur, DKI Jakarta, Indonesia

International Conference of Education on Science, Technology, Engineering and Mathematics
Jakarta 17-19 Oktober 2017
Website : ice-stem.uhamka.ac.id

64	ABS-32	Ainul Istiqomah, Krisna Satrio Perbowo, Sigid Edy Purwanto	UHAMKA	The Strength Of Scientific Approach In Order To Develop Students Mathematical Creative Thinking Ability In Junior High School
65	ABS-33	Susilo and Maryanti Setyaningsih	UHAMKA	Analysis Of Genetic Diversity And Genome Relationships Of Four Eggplant Spesies (Solanum Melongena L) Using Rapd Markers
66	ABS-36	Hendrik Seputera	UHAMKA	Numerical Analysis For Equipment Of Motion At Aware Atwood With Eular Method And Runge Kutta Ordo Empat
67	ABS-40	Aisyah Fitriana, Imas Ratna Ermawaty, Vrisca Mega Arum Sari	UHAMKA	Prove The Effect Of Electric Current On Function Of Tara Calor Using Total Differential
68	ABS-50	Muntazhimah M.Pd	UHAMKA	Collaborative Learning With Cabri-3D To Increase Spatial Ability Of Junior High School Students
69	ABS-51	Slamet, Samsul Maarif, Yunda Kurniawan	UHAMKA	Dienes AEM As An Alternative In Understanding The Algebric Concept Of Math In Indonesia
70	ABS-52	S Maarif, Aji Raditya, Krisna Satiro Perbowo	UHAMKA	Learning Geometry: Introducing Geometrical Concept Based On Historical Perspective Of Islam's Geometrical Development
71	ABS-57	Nok Yeni Heryaningsih (a^{*}), Hikmatul Khusna (b)	UHAMKA	Development Of Syntax Of Intuition Based Learning (IBL) Model In Solving Mathematics Problem In Senior High School, Sragen West Java
72	ABS-58	Asih Miatun (a^{*}), Muntazhimah (b)	UHAMKA	Experimentation Of Discovery Learning And Problem Based Learning Viewed From Self Regulated Learning Of Junior High School Students
73	ABS-63	Nurafni (a*), Rizki Dwi Siswanto (a), Ervin Azhar (a)	UHAMKA	Development Of Geometry Materials Based On Scientific Approach For Junior High School
74	ABS-65	Rizki Dwi Siswanto	UHAMKA	The Association Between Spatial Ability And Self-Regulated Learning With Guided Inquiry Learning Under Geogebra Environment
75	ABS-68	 Tri Isti Hartini	UHAMKA	The Association Between Spatial Ability And Self-Regulated Learning With Guided Inquiry Learning Under Geogebra Environment
76	ABS-71	Yusnidar Yusuf and Wahyu Hidayati	UHAMKA	Cloning Of Enzyme Encoder Gene Of Stem Bromelain On System Coming From Pichia Pastoris As Terapeutic Protein Candidate
77	ABS-74	Ayu Faradillah, Windia Hadi, Ayu Tsurayya	UHAMKA	Preservice Teachers' Mathematical Reasoning Ability In Solving Mathematical Non-Routine Problem According To Cognitive Style
78	ABS-77	Prima Mutia Sari(1), Fransisca Sudargo(2) dan Didik Priyandoko(2)	UHAMKA	The Correlation Between Science Process Skill, Concept Comprehension And Scientific Attitude On Regulation System Materials
79	ABS-78	Hikmatul Khusna (${ }^{*}$), Nok Yeni Heryaningsih (b)	UHAMKA	The Influence Of Learn Mathematics Using Savi Approch To Students' Ability Of Mathematical Modelling At Junior High School
80	ABS-81	Meyta Dwi Kurniasih, Dimas	UHAMKA	The Effect Of Ice Breaking By Stand Up Caomedy Toward Belief System

Organized by

Workshop of Mathematics, 1st floor of Building C
Faculty of Teacher Training and Education, University of Muhammadiyah Prof. DR. HAMKA JL. Tanah Merdeka, Rambutan, Pasar Rebo, Jakarta Timur, DKI Jakarta, Indonesia

International Conference of Education on Science, Technology, Engineering and Mathematics
Jakarta 17-19 Oktober 2017
Website : ice-stem.uhamka.ac.id

		Hakri Lenaldi, Wahidin		
81	ABS-83	Trisna Roy Pradipta1, a), and A.N.M. Salman2, b)	UHAMKA	Some Cycle-Supermagic Labelings Of The Calendula Graph
82	ABS-90	Kowiyah (a), Ima Mulyawati (b*)	UHAMKA	An Analysis Of Mathematic Representation Of Primary School Students From Gender Perspective
83	ABS-107	Suciana Wijirahayu, Pietra Dorand	UHAMKA	Affective Strategies, Attitudes \& A Model Of Speaking Performance Development In Telecomunication Engineering Major
84	ABS-120	Isnaini Handayani; Ray Leonard Januar; Sigid Edy Purwanto	UHAMKA	The Influence Of Missouri Mathematics Project Learning Model To Mathematical Problem Solving Ability Of Students
85	ABS-175	1. Fitri Alyani, 2. Fery Firmansyah, 3. Kiki A.Sugeng	UHAMKA	Odd Harmonious Labelling on Diamond Graph and Hibiscus Graph
86	ABS-176	Bita Dwi Rahmani	UHAMKA	Differential Item Functional Analysis On Pedagogic And Content Knowledge (PCK) Questionnaire For Indonesian Teachers Using RASCH Model
87	ABS-177	Yoppy Wahyu Purnomo1; *, Tian Abdul Aziz1, Puri Pramudiani1, Sutawanir Darwis2, \& Didi Suryadi3	UHAMKA	Potential Characteristics That Relate To Teachers MathematicsRelated Beliefs
88	ABS-181	Moh. Hardiyanto (1) and Imas Ratna Ermawaty (2)	UHAMKA	New Method In Muon-Hadron Absorption On Thx DUO2 Nano Material Structure At 561 Mhz Quantum Gyro-Magnetic

PAPER • OPEN ACCESS

Developing CORE model-based worksheet with recitation task to facilitate students' mathematical communication skills in linear algebra course

To cite this article: Risnawati et al 2018 J. Phys.: Conf. Ser. 948012052

View the article online for updates and enhancements.

You may also like
Constructivist based students' worksheet development in learning environmental pollution
I Munawwarah, I Khaldun and C Nurmaliah

- Preliminary Research: Developing Physics Electronic Student Worksheet Based on ExPRession model with the STEM approach
Putri Mardiana Sari, Kartini Herlina and Abdurrahman

Development and validation of integrated
science students worksheet based on
science process skills
Ramlawati, V Munatzir, M A Rusli et al.

Developing CORE model-based worksheet with recitation task to facilitate students' mathematical communication skills in linear algebra course

Risnawati ${ }^{1, \mathrm{a})}, \mathbf{S}$ Khairinnisa ${ }^{1, \mathrm{~b})}$ and A H Darwis ${ }^{1, \mathrm{c})}$
${ }^{1}$ State Islamic University of Sultan Syarif Kasim Riau, Indonesia
${ }^{\text {a }}$ E-mail: rwati04@gmail.com ${ }^{\text {b }}$ E-mail: septika.khairinnisa@gmail.com ${ }^{\text {c }}$ E-mail: alfina.hadiarti.d@gmail.com

Abstract

The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students' communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students' worksheet and students' mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students' worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students' worksheet was able to facilitate students' mathematical communication skills in linear algebra course.

1. Introduction

Mathematics is a science whose concepts are arranged continuously, so to learn a concept, one has to master the previous concept called pre-requisite. This also applies to linear algebra courses. Linear algebra is one of the foundations of knowledge in higher mathematics courses such as numerical methods, differential, and other equations. Basic competencies to be achieved after studying linear algebra are mastery of the matrix and its operations, the system of linear equations and solutions, and their vectors and transformations. Kaltz [1] states that "Algebra: Gateway to a technology Future". This shows that algebra has an important position in the development of science and technology.

Basically, algebra is not entirely new material for students, because it has previously been studied at elementary and secondary levels. This is in line with what has been stated by Mason as quoted by Becker and Rivera [2] that every students who starts school has demonstrated the ability to generalize and abstract certain cases and those things are the basic of algebra.

Linear algebra lectures are inseparable from the existence of mathematical communication activities. The communication relates to the delivery of messages/information from one party to another party. Lecturers cannot directly know the contents of the mind or student opinions without any communication. There are two reasons why learning mathematics focuses on communication, namely: (1) mathematics is essentially a language; and (2) mathematics and mathematics learning are, at heart, social activities [3].

Mathematics is a universal language, so by using mathematical form of communication, ideas and opinions possessed by a person can be conveyed clearly, precisely and briefly without having to be hampered by various local languages. In addition, mathematics is a form of social activity which involves various parties such as students and lecturers.

Ability of mathematical communication in the classroom will encourage students to respond based on various interpretations of the problems given by lecturers. Responses submitted by students to be a reference assessment by lecturers based on indicators of mathematical ability. Indicators that can be used to assess the ability of mathematical communication, to wit: (1) stating a situation, image, diagram, or real object into language, symbol, idea, or mathematical model; (2) explaining ideas, situations, and mathematical relations both orally and in writing; (3) listening, discussing, and writing about mathematics; (4) reading with the understanding of a written mathematical representation; and (5) revealing a mathematical description or paragraph in its own language [4]. Mathematical communication is generally divided into two, namely communication indicators in writing and oral. The indicators used in this research are written communication, namely (1) declaring a situation, image, diagram, or real object into language, symbol, idea, or mathematical model; (2) explaining the idea, situation, and mathematical relations in writing; and (3) revealing a mathematical description or paragraph in its own language.

The importance of mathematical communication skills is not yet in line with its implementation in classrooms. Although algebra has been introduced since elementary schools, there are still some students who still have difficulty in following linear algebra lectures. The problems that often occur in the class of linear algebra are, for example giving a story problem in the form of linear equations, asking to create a graph in accordance with the conditions given, and looking for possible settlement. Some students still make mistakes in the use of notation, for example, the notation of a matrix[]written as | |, which is the symbol of the determinant of matrix. In addition, there is also the problem of writing matrices and operations, such as writing a trace matrix as A^{T} which means the transpose matrix and errors in the use of problem solving algorithms. On the story problem, most students have difficulty in declaring the story into mathematical symbols, such as making a mathematical model. Other possible problem is students' difficulties in preparing argument, for example on problems that ask them to write reason in systematic and detailed problem solving. The problem that is seen during the lecture process in the classroom and also during the quiz and mid or end of the semester exam. The score of the students' linear algebra test is still largely low on the story and picture problems, whereas the material tested has been studied previously. These problems indicate the still low mathematical communication ability of students in linear algebra courses.

The problems found in lectures of linear algebra are such as less effective and efficient teaching materials. The material presented in textbooks is largely unstructured according to the curriculum used. In addition, the material contained in the book to be taught and the problems in the book sometimes less appropriate with the level of students' ability. Such teaching materials sometimes make students to have difficulty in seeking reference sources other than those described by the lecturer during the course. Lack of reading resources, references, and examples of problems might result in class conditions that tend to be passive. The students usually only focus on finding the results of a number of problems given by the lecturer. Students are less familiar with different questions. Therefore, various ways to communicate mathematically are less likely to be facilitated. The effort to overcome these things is to develop an appropriate teaching material. The intended teaching materials are those can facilitate students to develop students' mathematical communication skills. One of the teaching materials is students'worksheet.

The use of students' worksheet is to help students shape their own understanding and communicate every ideas in the form of numbers, pictures, graphics, diagrams, words as well as other forms of written communication individually. Students' worksheet developed are teaching materials that contain short material useful as a reference for students to understand the material, but not presented thoroughly. In addition, the students' worksheet also contains various presentation of varied issues, so that students could be facilitated to communicate mathematically in linear algebra lectures. The variation in the given
problem provides an opportunity for students from various levels of mathematical ability to be able to communicate mathematically.

The use of students' worksheet in the linear algebra classes should be supported by classroom conditions that are more conducive such as in group-based learning model i.e. the CORE model. The application of the CORE model leads students to perform four frameworks proposed by Miller and Calfee, namely connect, organize, reflect, and extend [5]. Based on these four frameworks, it is found that the stage in the CORE model is connecting old knowledge with knowledge to be learned, organizing knowledge based on relevant and reasonable sources, carrying out reflection on various issues that have been discussed, and deepening and expanding the concept by applying these concepts to further mathematical problems.

CORE model requires students to learn and comprehend the concept thoroughly and continuously so that the lecturer should get students to make preparation before starting the lesson such as giving assignment. The task given before presenting new knowledge is called a recitation task. According to Pasaribu [6], a recitation task is a form of task that is not only aimed at memorizing but also contemplating its contents, representing it in own words, understanding, and interpretation. The assignment aims at reviewing new lessons, memorizing knowledge given, solving problems, collecting materials, giving exercises, assisting lecturers in enhancing more lecturers and in assessing students' readiness and mastery of a lecture material. Therefore, the task should not only be given after lecture, but also can be given beforehand. Giving task before commencing lesson is still rare conducted by most lecturer [7]. It is revealed that the tasks assigned by teachers tend to be carried out at the end of the lesson so that in the process of learning mathematics, most mathematics teachers always use lecture and expository methods [7]. This is not only happening at school but also on classes in higher education. Most lecturers tend to give tasks after teaching a material. Therefore, researchers designed a task given before a lecture so that students have prepared to learn a new material in the next lecture.

Until now, researchers have not found the CORE model-based student' worksheets and recitation assignments aimed at providing student learning aids in linear algebra courses so that students' mathematical communication skills are facilitated effectively and efficiently. Therefore, researchers are interested in conducting and developing the study. The research questions are as follows:

1. How to develop a CORE-based students' worksheet model and provide recitation tasks to facilitate students' mathematical communication skills?
2. What is the student's mathematical communication skill after attending CORE model-based students' worksheet and providing recitation task?

2. Methodology

This research is a sort of development research on linear algebra lecture. This research was conducted to thirty students of mathematics education department of one public university at Riau in the even semester of the academic year 2015/2016. The development procedure of this model uses a model developed by Lee and Owens, namely ADDIE that uses five stages of development i.e. analysis, design, development, implementation, and evaluation [8]. Analysis stage consists of two steps, to wit: needs assessment and front-end analysis (preliminary analysis). The design stage includes activities determining: (1) the schedule, (2) the work team, (3) the design specification, (4) the creation of the material structure, and (5) the evaluation. At this stage, evaluation is carried out by media and material experts. The next stage is development stage which is a trial stage before implementation. The trial consisted of a small group trial consisting of seven people and a large group trial consisting of thirty people. The next stage is implementation which is the application of student worksheets developed. At this stage of implementation, researchers will conduct field trials, which aims to determine whether the resulting product has a good effectiveness in learning. The final step is the evaluation. It is conducted to see the effectiveness of students' worksheet that has been developed.

3. Results and Discussion

The development of a CORE-based students' worksheet model with recitation assignment takes three months (March-June) of 2016. Components contained in students' worksheet developed in linear algebra lectures on matrix materials are as follows:
a. Cover consisting of material title, author's name, course and so on.
b. Preface and table of contents.
c. Lecture materials consisting of pre-requisites for students' worksheet, students' worksheet instructions, material summaries and lecture evaluation questions corresponding to the four stages of the CORE model, as well as recitation tasks.
d. References, about the author.

The students' worksheet developed was validated by media and material experts. Result of the validation showed that the students' worksheet made in the category is very valid. However, there are some things that need to be revised: (1) the use of language should be more practical and concise; (2) the problem should be varied from the easiest to the most difficult; and (3) the material distribution for one lecture should not be too much.

Based on the experts' suggestions, a revision was made to the students' worksheet. After revision, a small group of seven students was tested. The result of the response obtained the average percentage is 92.14% so it can be categorized very practical. Then tested in large groups consisting of thirty students and obtained the average percentage is 90.19% and is categorized very practical. After conducting the two trials, it might be concluded that the students' worksheet that has been made was good. The next stage is implementation stage conducted to see the effectiveness of the lectures. The students' worksheet was used and implemented using the CORE model along with the assignment of recitation tasks. The recitation task was given at the end of each students' worksheet at each meeting as a direction for the next meeting.

The students' activity sheet filled by the observer showed that the students were actively involved in learning process using the developed students' worksheet. Students were able to work on the worksheet in accordance with the guidance provided, address problems correctly, and inquire and maintain actively the results of work either with group members or with other groups. The lecture process using this developed worksheet led students to interact actively with other group member in an effort to understand the material and solve the various mathematical problems given. Reflection and conclusions on the materials of each student might be different even in the same group. The reason is that the worksheet provided an independent evaluation sheet to assess the extent to which students' mathematical ability could be obtained. After that, each group presented the solutions to the existing problems. At the end of the lecture stage, the quiz was given for students to be solved individually.

4. Conclusions

Student activity in linear algebra lectures uses the worksheet developed in line with the score of the final evaluation result (post-test). The result of post-test data analysis of students' mathematical communication skills showed that the average of ideality percentage was 87.83% (high category). The results of this assessment show that lectures of linear algebra using CORE model based student's worksheet with recitation tasks were able to facilitate students' mathematical communication skills. The result of post-test showed that there were minimal mistakes of using symbols / mathematical terms, most of the students have been able to read the table/graph / diagram according to the command in the given problem. Students were getting used to doing mathematical modeling although there were still some errors in the completion algorithm. However, differences of mathematical communication skills between students who use and who do not use students' worksheet-based model CORE along with recitation tasks need to be investigated in further research using quasi-experimental research.

References

1. Kaltz. V, J 2007 Algebra: Gateway to a Technological Future (University of the District of Columbia:Columbia)
2. Becker, J.R. and F.D. Rivera 2008 Generalization in Algebra: The Foundation of Algebraic Thinkingand Reasoning Across Grades ZDM Mathematics Education 401
3. Baroody, AJ. and Niskayuna 1993 Problem Solving, Reasoning and Communicating, K-8. Helping Children Think Mathematically (Merril Publishing Company: New York)
4. Sumarmo, Utari 2010 Berpikir dan Disposisi Matematik: Apa, Mengapa, dan Bagaimana Dikembangkan Pada Siswa (FPMIPA UPI:Bandung)
5. Miller, R.G. and Calfee, R.C 2004 Making Thinking Visible: A Method to Encourage Science Writing in the Upper Elementary Grades Science and Children 423 pp 20
6. Pasaribu, I.L 1999 Didaktik dan Metodik (Tarsito:Bandung)
7. Wahyudin 1986 Kemampuan Guru Matematika, Calon Guru Matematika, dan Mahasiswa Dalam Mata Pelajaran Matematika. Studi Terhadap Tingkat Penguasaan Guru Matematika, Calon Guru Matematika, dan Mahasiswa dalam Mata Pelajaran Matematika, serta Kemampuan Mengajar Para Guru Matematika (Thesis Universitas Pendidikan Indonesia: Bandung)
