Search for collections on Universitas Islam Negeri Sultan Syarif Kasim Riau Repository

PENERAPAN DATA MINING MENGGUNAKAN METODE CLUSTERING K-MEANS PADA ANALISA POLA BELANJA KONSUMEN DALAM MENINGKATKAN PENJUALAN (STUDI KASUS : TOKO ABIE JM PASAR PAGI JAYA MUKTI KOTA DUMAI)

AFRIDO, -- PENERAPAN DATA MINING MENGGUNAKAN METODE CLUSTERING K-MEANS PADA ANALISA POLA BELANJA KONSUMEN DALAM MENINGKATKAN PENJUALAN (STUDI KASUS : TOKO ABIE JM PASAR PAGI JAYA MUKTI KOTA DUMAI). 3rd South American International Conference on Industrial Engineering and Operations Management. ISSN 2169-8767 (In Press)

[img]
Preview
Text
REPOSITORY AFRIDO.pdf - Published Version

Download (2MB) | Preview

Abstract

This study applied Data Mining method to cluster sales transactions at Abie JM Stores experienced a decline in sales. Therefore, a strategy was needed to increase sales again. One way that can be done to determine customer needs is to analyze sales transaction data. The sales transaction data can be further processed to obtain more helpful information to increase income, sales, and purchase turnover. Data mining by using k-means grouping or clustering. Data mining can be used to find. solutions in making sales decisions to increase revenue. Sales data storage stores a large number of sales transaction records, where each record provides products purchased by consumers in each sales transaction. From the calculation results, it can be concluded that the k-means clustering method can support the system well. Therefore we need a data processing process using a data mining technique. This study's data collection process uses the interview process and shopping transaction data collection Keywords Clustering K-Means, Data Mining, Customer Analysis, Consumers, Transaction Data.

Item Type: Article
Subjects: 000 Karya Umum
Divisions: Fakultas Sains dan Teknologi > Teknik Industri
Depositing User: fsains -
Date Deposited: 27 Jul 2022 06:47
Last Modified: 27 Jul 2022 06:47
URI: http://repository.uin-suska.ac.id/id/eprint/62258

Actions (login required)

View Item View Item