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We consider a damped, parametrically driven discrete nonlinear Klein–Gordon equation, that models 
coupled pendula and micromechanical arrays, among others. To study the equation, one usually uses 
a small-amplitude wave ansatz, that reduces the equation into a discrete nonlinear Schrödinger equation 
with damping and parametric drive. Here, we justify the approximation by looking for the error bound 
with the method of energy estimates. Furthermore, we prove the local and global existence of solutions 
to the discrete nonlinear Schrödinger equation. To illustrate the main results, we consider numerical 
simulations showing the dynamics of errors made by the discrete nonlinear equation. We consider 
two types of initial conditions, with one of them being a discrete soliton of the nonlinear Schrödinger 
equation, that is expectedly approximate discrete breathers of the nonlinear Klein–Gordon equation.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

We consider the following parametrically driven discrete Klein–
Gordon (dKG) equation with damping

ü j = −u j − ξu3
j + ε2�u j − αu̇ j + H cos (2�t) u j, (1)

where u j ≡ u j(t) is a real-valued wave function at site j, the over-
dot denotes the time derivative and ε2 represents the coupling 
constant between two adjacent sites, with �u j = u j+1 −2u j +u j−1
being the one-dimensional discrete Laplacian. The positive param-
eters α and H denote the damping coefficient and the strength 
of the parametric drive, respectively. The real constant ξ is the 
nonlinearity coefficient and � is the driving frequency. The gov-
erning equation (1) is relevant to the experimental study of lo-
calised structures in coupled pendula [1,2] and micromechanical 
arrays [3].
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To analyse the equation, one usually uses a multiple scale ex-
pansion and the rotating wave approximation under the assump-
tion of small wave amplitudes, that lead to a damped, parametri-
cally driven discrete nonlinear Schrödinger (dNLS) equation [4–7]. 
Using the scaling α = ε2α̂, H = 2ε2h, � = 1 + ε2�/2, and a slow 
time variable τ = ε2t/2, we consider a (2 : 1) parametric resonance 
and define a slowly varying approximation to the solutions of the 
dKG lattice equation (1)

u j(t) ≈ φ j(t) = ε A j(τ )ei�t + ε3

8

[
ξ A j(τ )3 − h A j(τ )

]
e3i�t +c.c.,

(2)

that will yield the dNLS equation

i Ȧ j = �A j − iα̂A j + �A j − 3ξ |A j|2 A j + h Ā j . (3)

Here, the dot denotes derivative with respect to the slow time τ , 
which implies that the approximation (2)–(3) is expected to be 
valid until t ∼ O(2/ε2). The abbreviation c.c. means the complex 
conjugate of the preceding terms. It should be clear by now that 
the coupling constant (i.e., the prefactor of the discrete Laplacian 
term) is scaled to ε2 only for the sake of convenience, so that u j =
O(ε). Replacing ε → √

ε will yield the standard scaling used, e.g., 
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in [8]. Our scaling may also be interpreted that instead of using 
the coupling constant as a measure of the smallness, we use the 
solution amplitude.

The presence of parametric drive and damping in the dNLS 
equation was possibly first studied in [9], where the existence of 
localised solutions was discussed using a nonlinear map approach. 
It was shown that numerous types of localised states emerge from 
the system depending on the strength of the parametric driving. 
The parametrically driven dNLS equation (3) was studied in [10,
11], where it was shown that the parametric drive can change the 
stability of fundamental discrete solitons, i.e., it can destroy onsite 
solitons as well as restore the stability of intersite discrete soli-
tons, both for bright and dark cases. In [12], breathers of (3), i.e., 
spatially localised solutions with periodically time varying |A j(τ )|
emanating from Hopf bifurcations, were studied systematically.

Despite the wide interests in both equations (1) and (3), the re-
duction from the former to the latter has not been rigorously justi-
fied. Without damping and parametric drive, the analysis was pro-
vided rather recently by Pelinovsky, Penati and Paleari [8]. How-
ever, as the presence of damping and drive will certainly require 
modifications in the justification of the reduction, here we address 
the problem, which will be the primary aim of the paper. Follow-
ing [8], we use an energy estimate method. The method has been 
used as well in various systems of differential equations, see, e.g., 
[13–17].

The paper is organized as follows. Mathematical formulations 
to obtain the uniqueness and global existence of solutions to the 
dNLS equation (3) are given in Section 2. In Section 3, we discuss 
an error bound estimation of the rotating wave approximation, 
which leads to the main result of the paper, i.e., Theorem 1. Fi-
nally, in Section 4 we illustrate the main results by considering the 
evolution of errors made by the rotating wave approximation for 
two different initial conditions, with one of them corresponding to 
discrete solitons of the nonlinear Schrödinger equation (3).

2. Analytical formulation and preliminary results

Substituting the slowly varying approximation ansatz (2) into 
the original dKG equation (1) and taking into account the dNLS 
equation (3), we obtain the residual terms in the form of

R j(t) :=

ε5
[

ei�t

8

(
−3hξ A j Ā2

j + 3ξ2 A3
j Ā2

j + h2 A j − hξ A3
j

+ 4iα�A j + 4α Ȧ j − 2�2 A j + 4i� Ȧ j + 2 Ä j

)
+ e3i�t

8

(
−6hξ A2

j Ā j + 6ξ2 A4
j Ā j − 3iαh A j + 9h�A j − 3ih Ȧ j

− 2h A j + h A j−1 + 1

8
h A j+1 + 3iαξ A3

j − 9ξ�A3
j + 9iξ A2

j Ȧ j

+ 2ξ A3
j − ξ A3

j−1 − ξ A3
j+1

)
+ e5i�t

8

(
h2 A j − 4hξ A3

j + 3ξ2 A5
j

)]
+ ε7

[
3ei�t

32

(
h2ξ A2

j Ā j − hξ2 A4
j Ā j − hξ2 A2

j Ā3
j + ξ3 A4

j Ā3
j

)
+ e3i�t

32

(
−6iαh�A j − 2αh Ȧ j − h Ä j + 9h�2 A j − 6ih� Ȧ j

+ 6iαξ�A3
j + 6αξ A2

j Ȧ j − 9ξ�2 A3
j + 18iξ�A2

j Ȧ j

+ 6ξ A j Ȧ2
j + 3ξ A2

j Ä j

)

+ e5i�t

64

(
3h2ξ A2

j Ā j − 6hξ2 A4
j Ā j + 3ξ3 A6

j Ā j

)
+ e7i�t

64

(
3h2ξ A3

j − 6hξ2 A5
j + 3ξ3 A7

j

)]
+ ε9

[
e3i�t

512

(
−3h3ξ A2

j Ā j + 6h2ξ2 A4
j Ā j + 6h2ξ2 A2

j Ā3
j

− 3hξ3 A6
j Ā j − 6hξ3 A4

j Ā3
j + 3ξ4 A6

j Ā3
j

)
+ e9i�t

512

(
−h3ξ A3

j + 3h2ξ2 A5
j − 3hξ3 A7

j + ξ4 A9
j

)]
+ c.c. (4)

Note that the dNLS equation (3) is obtained from removing the 
resonant terms at O(ε3). The usual rotating frame ansatz, where 
one uses only the first term of (2) and its complex conjugate, i.e., 
u j(t) ≈ ε A j(τ )ei�t + c.c., will also yield (3), but it leaves a larger 
residue:

R j(t) := ε3(ξ A3
j − h A j)e3i�t

+ ε5
( 1

2 iα̂�A j − 1
4 �2 A j + 1

2 α̂ Ȧ j + 1
2 i� Ȧ j + 1

2 Ä j
)

ei�t

+ c.c.

Over a long time t ∼ O(2/ε2), the residue will lead to an accum-
mulated error that is of the same order as the approximation itself, 
which can be shown using the procedure outlined in the present 
paper, and in turn will be problematic for the expansion. Thus, 
R j needs to be smaller. It might be made small only if ξ and h
were both to be very small. However, this cannot be the case since 
they have been derived from scaling the original “physical” param-
eters properly with respect to ε, i.e., their smallness have already 
been exploited. The only way to reduce the residue is therefore by 
modifying the rotating ansatz, which following [18] (see Chapter 5) 
yields (2).

In the followings, we denote by A the sequence (A j) j∈Z in 

2(Z), which is a Banach space equipped with norm,

‖A‖
2(Z) =
⎛⎝∑

j∈Z
|A j|2

⎞⎠1/2

. (5)

First, we prove the preliminary estimates on the global solutions 
of the dNLS equation (3) in 
2(Z)-space, the leading order approx-
imation (2), and the residual term (4).

Lemma 1. For every A(0) = ϕ ∈ 
2(Z), the dNLS equation (3) admits 
a unique global solution A(τ ) on [0, ∞) which belongs to Ck

([0, +∞),


2(Z)
)
. Furthermore, the unique solution A(τ ) satisfies the estimate

‖A(τ )‖
2(Z) ≤ ‖ϕ‖
2(Z) e−(α̂−2|h|)τ . (6)

Proof. We split the proof into four parts.

1. Local existence. Let us rewrite Eq. (3) in its equivalent inte-
gral form

A j(τ ) = ϕ j − i

τ∫
0

(
�A j − iαA j + �A j − 3ξ |A j|2 A j + h Ā j

)
ds.

(7)

Define a Banach space,

B = {A ∈ C
(
[0, τ̃ ], 
2(Z)

)
|‖A‖
2(Z) ≤ δ} , (8)

equipped with norm,
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‖A‖B = sup
τ∈[0,τ̃ ]

‖A(τ )‖
2(Z). (9)

For A ∈ 
2(Z), we define a nonlinear operator

K j [A(τ )]

= ϕ j − i

τ∫
0

(
�A j − iαA j + �A j − 3ξ |A j|2 A j + h Ā j

)
ds. (10)

We want to prove that the operator K is a contraction mapping 
on B. Because the discrete Laplacian � is a bounded operator on 

2(Z), we have

‖�A‖
2(Z) ≤ C�‖A‖
2(Z). (11)

To be precise, C� = 4 because the operator is a self-adjoint and its 
continuous spectrum lies within the interval [−4, 0].

Since 
2(Z) is an algebra, there is a constant C > 0 such that 
for every A, B ∈ 
2(Z), we have

‖AB‖
2(Z) ≤ C‖A‖
2(Z)‖B‖
2(Z). (12)

From Eq. (10) and using the estimate (12), we obtain the following 
bound

‖K (A)‖B ≤ δ0 + τ̃ (Cδ + α̂δ + �δ + 3|ξ |δ3 + |h|δ). (13)

We can pick δ0 < δ
2 and τ̃ ≤ δ

2(Cδ+α̂δ+�δ+3|ξ |δ3+|h|δ) to conclude 
that K : B → B.

Let A, B ∈ B. Then we have

K j[A(τ )] − K j[B(τ )]

= −i

τ∫
0

[
�(A j − B j) − iα̂(A j − B j) + �(A j − B j)

−3ξ(|A j|2 A j − |B j|2 B j) + h( Ā j − B̄ j)
]

ds . (14)

Noting that

|A j|2 A j − |B j|2 B j

= |A j|2 A j − |A j|2 B j + |A j|2 B j − |B j|2 B j

= |A j|2(A j − B j) + B j(|A j|2 − |B j|2)
= |A j|2(A j − B j) + B j(A j Ā j − A j B̄ j + A j B̄ j − B j B̄ j)

= |A j|2(A j − B j) + B j[A j( Ā j − B̄ j) + (A j − B j)B̄ j], (15)

we obtain that

‖K (A) − K (B)‖B ≤ τ̃
(

C� + α̂ + � + 3|ξ |Cδ2 + |h|
)

‖A − B‖B.

(16)

By taking

τ̃ < min

(
1

C� + α̂ + � + 3|ξ |Cδ2 + |h| ,
δ

2(Cδ + α̂δ + �δ + 3|ξ |δ3 + |h|δ)
)

, (17)

then K is a contraction mapping on B. Therefore, by Banach fixed 
point theorem, there exists a unique fixed point of operator K , 
which is a unique solution of (7).

2. Smoothness. From Eq. (3), we obtain that

sup
τ∈[0,τ̃ ]

‖ Ȧ‖
2(Z) ≤
(

C� + α̂ + � + |h| + 3|ξ |δ2
)

δ , (18)

which shows that the solution belongs to C1
([0, τ̃ ), 
2(Z)

)
.

Furthermore, by writing η = (A, Ā), we have

i
dη

dτ
= Lη + N(η) + F (η) , (19)

where

Lη =
[

� − iα̂ + �

−� − iα̂ − �

]
η ,

N(η) = 3ξ

2
|η|2η ,

F (η) =
[

0,h
h,0

]
η . (20)

Differentiating (19), we obtain

i
d2η

dτ 2
= L

dη

dτ
+ DN(η) · dη

dτ
+ D F (η) · dη

dτ
. (21)

Since N(η) and F (η) are smooth on 
2(Z) and dη
dτ ∈ C

([0, τ̃ ),


2(Z)
)
, then we have

d2η

dτ 2
∈ C

(
[0, τ̃ ), 
2(Z)

)
, (22)

which implies that A ∈ C2
([0, τ̃ ), 
2(Z)

)
. Using a similar procedure 

for higher derivatives, we conclude that

A ∈ Ck
(
[0, τ̃ ), 
2(Z)

)
. (23)

3. Maximal solutions. We can construct a maximal solution by 
repeating the steps above with the initial condition A(τ̃ − τ0) for 
some 0 < τ0 < τ̃ and by using the uniqueness result to glue the 
solutions.

4. Global existence. To prove the global existence, first we mul-
tiply the dNLS equation (3) with Ā j and use its complex conjugate 
to obtain

i
d

dτ

(
A j Ā j

) − (
Ā j�A j − A j� Ā

) = −2iα̂|A j|2 + h( Ā2
j − A2

j ) .

(24)

Note that∑
j∈Z

(
A j� Ā j − Ā j�A j

) = 0. (25)

Summing up (24) over j, we then get

d

dτ
‖A‖2


2(Z)
= −2α̂‖A‖2


2(Z)
+ 4 h

∑
j∈Z

Im( Ā j)Re( Ā j). (26)

For the last term in the above equation, we have the estimate

h
∑
j∈Z

Im( Ā j)Re( Ā j) ≤ |h|
∑
j∈Z

∣∣Im( Ā j)
∣∣ ∣∣Re( Ā j)

∣∣
≤ |h|‖A‖2


2
k (Z)

, (27)

which leads to
d

dτ
‖A‖2


2(Z)
+ 2(α̂ − 2h)‖A‖2


2(Z)
≤ 0 . (28)

Integrating the inequality, we get

‖A(τ )‖
2(Z) ≤ ‖ϕ‖
2(Z) e−(α̂−2|h|)τ , (29)

which shows that A(τ ) cannot blow up in finite time. Thus, the 
dNLS equation (3) admits global solutions. �
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It is worth mentioning that due to the damping term, the dNLS 
equation (3) does not possess a constant of motion. However, we 
can define a Hamiltonian (i.e., an energy function) associated with 
equation (3) as

HdNLS[A](τ ) =
∑
j∈Z

(
|∇ A j|2 − �|A j|2 + 3ξ

2
|A j|4 − hRe(A2

j )

)
,

(30)

with ∇ A j = A j+1 − A j . The Hamiltonian function satisfies the dif-
ferential equation,

d

dτ
HdNLS[A](τ ) + 2αHdNLS[A](τ ) = −3αξ

∑
j∈Z

|A j(τ )|4 . (31)

When α = 0 (i.e., there is no damping present), HdNLS is conserved.
Now we provide estimates for the leading order approximation 

(2) and the residual terms (4) in the following lemmas.

Lemma 2. For every A(0) = ϕ ∈ 
2(Z), there exists a ε-independent 
positive constant Cφ that depends on ‖ϕ‖
2(Z), h, α̂ and τ0 , such that 
the leading-order approximation (2) satisfies

‖φ(t)‖
2(Z) + ‖φ̇(t)‖
2(Z) ≤ ε Cφ, (32)

for all t ∈ [0, 2τ0/ε
2] and ε ∈ (0, 1).

Proof. From the global existence in Lemma 1 and using the Banach 
algebra property of 
2(Z), we obtain

‖φ(t)‖
2(Z) =
∥∥∥ε (

A jei�t + Ā je−i�t
) + ε3

8

[(
ξ A3

j − h A j

)
e3i�t

+
(
ξ Ā3

j − h Ā j

)
e−3i�t

]∥∥∥

2(Z)

≤ ∥∥ε (
A jei�t + Ā je−i�t

)∥∥

2(Z)

+
∥∥∥ ε3

8

(
ξ A3

j e
3i�t − h A je3i�t

)∥∥∥

2(Z)

+
∥∥∥ ε3

8

(
ξ Ā3

j e
−3i�t − h Ā je−3i�t

)∥∥∥

2(Z)

≤ ε

(
2‖A‖
2(Z) + 1

4 |ξ |ε2
∥∥A3

∥∥

2(Z)

+ 1
4 |h|ε2 ‖A‖
2(Z)

)
≤ ε Cφ1 (33)

and∥∥φ̇(t)
∥∥


2(Z)
=

∥∥∥∥ 3

16
ih�ε5e−3i�t Ā j − 1

16
hε5e−3i�t ˙̄A j

+ 3

8
ihε3e−3i�t Ā j − 3

16
iξ�ε5e−3i�t Ā3

j

+ 3

16
ξε5e−3i�t Ā2

j
˙̄A j − 3

8
iξε3e−3i�t Ā3

j

− 1

2
i�ε3e−i�t Ā j + 1

2
ε3e−i�t ˙̄A j − iεe−i�t Ā j

− 3

16
ih�ε5e3i�t A j − 1

16
hε5e3i�t Ȧ j

− 3

8
ihε3e3i�t A j + 3

16
iξ�ε5e3i�t A3

j

+ 3
ξε5e3i�t A2

j Ȧ j + 3
iξε3e3i�t A3

j
16 8
+ 1

2
i�ε3ei�t A j + 1

2
ε3ei�t Ȧ j

+ iεei�t A j

∥∥∥∥

2(Z)

. (34)

Since A ∈ C1
([0,+∞), 
2(Z)

)
, then we have∥∥φ̇(t)

∥∥

2(Z)

≤ ε Cφ2 . (35)

From Eqs. (33) and (35), we obtain the inequality (32), which con-
cludes the proof. �
Lemma 3. For every A(0) = ϕ ∈ 
2(Z), there exists a positive ε-
independent constant C̃ R that depends on ‖A0‖
2 , h, α̂ and τ0 , such that 
for every ε ∈ (0, 1) and every t ∈ [0, 2τ0/ε

2], the residual terms in (4)
is estimated by

‖R(t)‖
2(Z) ≤ C̃ Rε5. (36)

Proof. To prove this lemma, we can use the result from Lemma 1
as well as the property of Banach algebra in 
2(Z), such that from 
the global existence and smoothness of the solution A(τ ) of the 
discrete nonlinear Schrödinger equation (3) in Lemma 1, we obtain 
the result (36). �
3. Main results

We are now ready to formulate the main result of the paper 
that is stated in the following theorem:

Theorem 1. Let u = (u j) j∈Z be a solution of the dNLS equation (1) and 
let φ = (φ j) j∈Z be the leading approximation terms given by (2). For 
every τ0 > 0, there are a small ε0 > 0 and positive constants C0 and C
such that for every ε ∈ (0, ε0) with

‖u(0) − φ(0)‖
2(Z) + ‖u̇(0) − φ̇(0)‖
2(Z) ≤ C0ε
3 , (37)

the inequality

‖u(t) − φ(t)‖
2(Z) + ‖u̇(t) − φ̇(t)‖
2(Z) ≤ Cε3 , (38)

holds for t ∈ [0, 2τ0ε
−2].

Proof. Write

u j(t) = φ j(t) + y j(t), (39)

where φ j(t) is the leading-order approximation (2) and y j(t) is the 
error term. The error will give us a description of how good φ j(t)
is as an approximation to solutions of the dKG equation.

Plugging the decomposition (39) into equation (1), we obtain 
the evolution problem for the error term as

ÿ j + y j + ξ
(

y3
j + 3φ2

j y j + 3φ j y2
j

)
− ε2�y j + ε2α̂ ẏ j

− 2ε2h cos(2�t) y j + R j(t) = 0 . (40)

Associated with equation (40), we can define the energy of the 
error term as

E(t) := 1

2

∑
j∈Z

[
ẏ2

j + y2
j − 2ε

(
y j y j+1 − y2

j

)]
. (41)

Note that from the Cauchy–Schwartz inequality, we have

∑
j∈Z

y j y j+1 ≤
⎛⎝∑

j∈Z
y2

j

⎞⎠1/2 ⎛⎝∑
j∈Z

y2
j+1

⎞⎠1/2

= ‖y‖2

2(Z)

, (42)
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and

−2ε
∑
j∈Z

y j y j+1 + 2ε
∑
j∈Z

y2
j ≥ −2ε‖y‖2


2(Z)
+ 2ε‖y‖2


2(Z)
= 0 .

(43)

Thus the energy is always positive for all t on which the solution 
y(t) is defined. We also have the inequality

‖ ẏ(t)‖2

2(Z)

+ ‖y(t)‖2

2(Z)

≤ 2E(t). (44)

From the energy (41) and the error term (40), we obtain that

dE

dt
= 1

2

∑
j∈Z

[
2 ÿ j ẏ j + 2 ẏ j y j − 2ε2 (

ẏ j y j+1 + y j ẏ j+1 − 2y j ẏ j
)]

=
∑
j∈Z

[
ÿ j + y j − ε2(y j+1 + y j − 2y j)

]
ẏ j

= −
∑
j∈Z

[
R j(t) + ξ

(
y3

j + 3φ2
j y j + 3φ j y2

j

)
+ ε2α̂ ẏ j − 2ε2h cos(2�t) y j

]
ẏ j . (45)

Setting E = Q 2 and using the Cauchy–Schwarz inequality, we have∣∣∣∣dQ

dt

∣∣∣∣ ≤ 1√
2
‖R(t)‖
2(Z)

+
[
|ξ |

(
2Q 3 + 3‖φ‖2


2(Z)
Q + 3

√
2‖φ‖
2(Z) Q 2

)
+ ε2α̂

2
Q + 2ε2|h|Q 2

]
. (46)

Take τ0 > 0 arbitrarily. Assume that the initial norm of the per-
turbation term satisfies the bound

Q (0) ≤ C0ε
3, (47)

where C0 is a positive constant. Define

T0 = sup

{
t0 ∈ [0,2τ0ε

−2] : sup
t∈[0,t0]

Q (t) ≤ C Q ε3

}
,

C R = sup
τ∈[0,τ0]

C̃ R , (48)

on the time scale [0, 2τ0ε
−2]. Then, we can rewrite the energy 

estimate (46) by applying Lemmas 2–3 and the definition (48) as∣∣∣∣dQ

dt

∣∣∣∣ ≤ 1√
2

C Rε5

+
(

4|ξ |C2
Q ε4 + 6|ξ |C2

φ + 6|ξ |√2CφC Q ε2 + α̂ + 4|h|
)

× ε2 Q

2
. (49)

Thus, for every t ∈ [0, T0] and sufficiently small ε > 0, we can find 
a positive constant K0, which is independent of ε, such that

4|ξ |C2
Q ε4 + 6|ξ |C2

φ + 6|ξ |√2CφC Q ε2 + α̂ + 4|h| ≤ K0. (50)

By simplifying and integrating (49), we get

Q (t)e− ε2 K0t
2 − Q (0) ≤

t∫
0

C Rε5

√
2

e− ε2 K0s
2 ds ≤

√
2C Rε3

K0
. (51)

By using (47), then we obtain
Q (t) ≤ ε3

(
C0 +

√
2C R

K0

)
eK0τ0 . (52)

Therefore, we can define C Q :=
(

C0 + 21/2 K −1
0 C R

)
eK0τ0 and this 

concludes the proof. �
4. Numerical simulations

In Section 2, we have discussed that small-amplitude solutions 
of the parametrically driven dKG equation (1) can be approximated 
by ansatz (2), that satisfies the dNLS equation (3) with a residue 
of order O(ε5). We then showed in Section 3 that the difference 
between solutions of Eqs. (1) and (3), that are initially of at most 
order O(ε3), will be of the same order for some finite time. In this 
section, we will illustrate the results numerically.

We consider Eq. (1) as an initial value problem in the domain 
D = {(n, t)|(n, t) ∈ [1, N] × [0, ̃T ]}, N ∈ N, T̃ ∈ R. The differential 
equation is then integrated using the fourth order Runge–Kutta 
method. Simultaneously we also need to integrate Eq. (3). As the 
initial data of the dKG equation, we take

u j(0) = φ j(0), u̇ j(0) = φ̇ j(t)
∣∣
t=0 . (53)

In this way, the initial error y(0) between u j(0) and φ j(0) (see 
(39)) will satisfy ‖y(0)‖
2 = 0 < C0ε

3, for any C0 > 0.
In the following, we take the parameter values � = −3, h =

−0.5, and α̂ = 0.1. The nonlinearity is considered to be ‘soften-
ing’, which without loss of generality is taken to be ξ = −1. This 
choice of nonlinearity coefficient will yield the dNLS equation (3)
with a ‘focusing’ or ‘attractive’ nonlinearity. The case ξ = +1, i.e., 
‘stiffening’ nonlinearity, corresponds to the ‘defocusing’ or ‘repul-
sive’ dNLS equation (3). In the dNLS description, the attractive and 
repulsive cases are mathematically equivalent through a “stagger-
ing” transformation (−1) j , that reverses the phases in every sec-
ond lattice.

In our first simulation, we consider the fundamental site-
centred discrete soliton of the dNLS equation, that has been con-
sidered before in, e.g., [9–12]. Such solutions will satisfy (3) with 
Ȧ j = 0 and can be obtained rather straightforwardly using New-
ton’s method.

In Fig. 1(a) and 1(b) we plot the solutions u j(t) and φ j(t) for 
ε = 0.1 at two different subsequent times. In panel (c) of the same 
figure, we plot the error ‖y(t)‖ between the two solutions, which 
shows that it increases. However, the increment is bounded within 
the proven estimate ∼ Cε3 for quite a long while.

We have performed similar computations for several different 
values of ε → 0. Taking τ0 = 1, we record supt∈[0,2τ0/ε2]‖y(t)‖ for 
each ε. We plot in Fig. 1(d) the maximum error as a function of ε. 
We also plot in the same panel the best power fit in the nonlinear 
least squares sense, which agrees with Theorem 1.

Discrete solitons of the dNLS equation expectedly approximate 
discrete breathers of the dKG equation. Our simulations above in-
dicate this as well. Yet, how close are they with each other? In Ap-
pendix A, we show numerically that they are O(ε3)-apart, which 
interestingly seem to follow the result in Theorem 1.

In our second simulations, we consider a perhaps more inter-
esting initial condition in the form of a clustered state:

A j = e0.05i j, j = 21, . . . ,30, (54)

and A j vanishes elsewhere. The dynamics at some instances are 
shown in Fig. 2. We also computed the maximum error made 
by the rotating wave approximation within the time interval 
[0, 2τ0/ε

2], with τ0 taken to be 1, and plotted it in Fig. 2(d) for 
several values of ε. The best power fit to the error also shows the 
same behaviour, i.e., the error is O(ε3).
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Fig. 1. Panels (a, b) show numerical solutions of the dKG equation (blue circles) and the corresponding rotating wave approximations from the dNLS equation (red stars) at 
two time instances t = 100 and t = 1000. Here, ε = 0.1. Panel (c) is the time dynamics of the error. Panel (d) is the maximum error of the dNLS approximation within the 
interval t ∈ [0, 2/ε2] for varying ε → 0. In the picture, we also plot the best power fit of the error, showing the same order as in Theorem 1.

Fig. 2. The same as Fig. 1, but for the initial data (54).
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Appendix A. Discrete breathers vs. discrete solitons

While discrete solitons of the dNLS (3) correspond to spa-
tially localised, but time-independent solutions of the equation 
and can be computed rather immediately, discrete breathers are 
spatially localised, but temporally periodic solutions of the dKG 
equation (1).

There are several numerical methods that have been developed 
to seek for discrete breathers, see the review [19,20]. Here, we use 
a Fourier series representation by writing u j(t) as

u j(t) =
K∑

k=1

a j,k cos ((k − 1)�t) + b j,k sin (k�t) , (A.1)

where a j,k and b j,k are the Fourier coefficients and K � 1 is the 
number of Fourier modes used in our numerics. By substituting the 
expansion (A.1) into the dKG equation (1), multiplying with each 
mode, and integrating it over the time-period 2π/�, one will ob-
tain coupled nonlinear algebraic equations for the coefficients a j,k
and b j,k . Then, we use a Newton’s method to solve the equations. 
Breather solutions will be obtained by choosing a proper initial 
guess for the coefficients a j,k and b j,k .

Once a discrete soliton or a discrete breather is found, it is nat-
urally relevant to study their stability.

Let Ã j = x̂ j + i ŷ j be a discrete soliton of the dNLS equation. We 
determine its linear stability by writing

A j = Ã j + δ(x̂ j + i ŷ j)eλτ . (A.2)

Substituting (A.2) into (3) and linearising around δ = 0 will yield 
the eigenvalue problem

λ

(
x̂ j
ŷ j

)
=

⎛⎝ −6ξx j y j − α � + � − h − 3ξ
(

x2
j + 3y2

j

)
−� − � − h + 3ξ

(
3x2

j + y2
j

)
6ξx j y j − α

⎞⎠
×

(
x̂ j
ŷ j

)
. (A.3)

In here, the solution Ã j is said to be linearly stable when all of 
the eigenvalues λ have Re(λ) ≤ 0 and unstable when there is an 
eigenvalue with Re(λ) > 0.

As for discrete breathers of the dKG equation, their linear sta-
bility is determined using Floquet theory that can be computed 
numerically as follows. Let ũ j(t) be a breather solution. By defining 
u j(t) = û j(t) + δY j(t), substituting it into Eq. (1), and linearis-
ing the equation around δ = 0, we obtain the system of linear 
differential-difference equations

Ẏ j = Z j

Ż j = −Y j − 3ξ û2
j Y j + ε2�2Y j − αZ j + H cos (2�t) Y j. (A.4)

Integrating Eqs. (A.4) in the numerical domain D , where now T̃ =
2π/�, and using the standard basis in R2N , i.e., 

{
e0

1, e0
2, ..., e0

2N

}
as 

the initial condition at t = 0, we will obtain a set of solutions at 
t = T̃ , which is our monodromy matrix

M =
{

E T̃
1 , E T̃

2 , ..., E T̃
2N

}
∈R

2N×2N . (A.5)

The breather ũ j(t) is said to be linearly stable when all the eigen-
values λdKG of the monodromy matrix M , which are known as 
Floquet multipliers, lie inside or on the unit circle and unstable 
when there exists at least one λdK G lying outside the unit circle. 
Note that in the presence of damping, the set of continuous multi-
pliers will lie on a circle of radius e

−απ
� , see [21,22].

In the following, we focus on breathers and discrete solitons for 
the same parameter values as in Section 4, i.e., � = −3, h = −0.5, 
α̂ = 0.1, and ξ = −1. For ξ = +1, due to the staggering transfor-
mation explained briefly in Section 4, discrete breathers of (1) with 
small amplitudes and discrete solitons of (3) will have exponen-
tially decaying staggered tails.

For our computations, we solve the dKG equation (1) for peri-
odic in time solutions using the number of Fourier modes K = 3
and the lattice sites N = 50. Larger numbers, i.e., K = 9 and 
N = 400, have been used as well to make sure that the results 
are independent of the lattice size and the number of modes.

We present a breather solution and its time dynamics within 
one period in Fig. A.3 for ε2 = 0.05. In Fig. A.3(b), we compare 
Fig. A.3. A breather of (1) for ε2 = 0.05. Panel (a) shows the dynamics of the solution in one period, while panel (b) presents the comparison of the breather and its 
approximation (2) at t = 0, with A j being a discrete soliton of Eq. (3).
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Fig. A.4. Plot of the maximum difference (A.6) of the discrete Schrödinger approx-
imation (3) for varying ε. The dashed line is the best power fit, indicated in the 
legend. The inset shows the curves in a log scale.

the breather in panel (a) with its corresponding approximation (2), 
where A j is the discrete soliton of Eq. (3). One can note that they 
are in good agreement.

By defining a maximum difference between breathers of (1) and 
their approximations (2) using discrete solitons of (3) as

E = sup
0≤t≤2π/�

‖y(t)‖
2 , (A.6)

we depict the error for varying ε in Fig. A.4. We also present in 
the same panel, the best power fit to the numerical results, which 
interestingly follows the theoretical prediction of the error in The-
orem 1, i.e., ∼ ε3.
We have computed the corresponding monodromy matrix for 
the stability of the solution in Fig. A.3(a). The Floquet multipliers 
are plotted in Fig. A.5(a). We have also solved Eq. (A.3) for the 
corresponding discrete soliton of the dNLS equation (3) and plot 
the eigenvalues λ in Fig. A.5(b), where interestingly we obtain that 
both solutions experience the same type of instability (i.e., oscilla-
tory instability as the critical multipliers and eigenvalues are both 
complex-valued). For the dNLS solitons, this is in agreement with 
the results of Ref. [10]. For the dKG breather, the instability is simi-
lar to that reported in [2]. Moreover, from the time scales that lead 
to Eqs. (2)–(3), we can obtain the relation between Floquet multi-
pliers λdKG of the dKG monodromy matrix (A.5) and eigenvalues λ
of the dNLS stability matrix (A.3), i.e.,

λdKG ∼ eπε2λ/�. (A.7)

Using the transformation, we depict in Fig. A.5(b) the critical mul-
tipliers as red stars, where we learn that the localised solutions do 
not only have the same type of instability, but their critical eigen-
values have relatively comparable magnitudes.

While in Fig. A.4 we plot the error made by the dNLS solitons 
in approximating the dKG breathers, in Figs. A.5(c) and A.5(d) we 
compare their critical eigenvalues and multipliers for varying ε. 
We obtain that the breathers and solitons do not necessarily share 
the same type of stability. In fact, there are intervals of coupling 
constant ε on which the breathers are stable, even though the cor-
responding dNLS solitons are unstable. This observation nonethe-
less does not violate the analytical results in Sections 2–3.

Figs. A.6(a) and A.6(b) show the typical dynamics of the os-
cillatory instability of the breather and its corresponding discrete 
Fig. A.5. Panel (a) shows Floquet multipliers of the breather in Fig. A.3(a), showing the linear instability of the solution. Panel (b) presents the eigenvalues of the corresponding 
discrete soliton of DNLS equation (3). Red stars in the panel are the critical multipliers in panel (a), that have been transformed following the relation (A.7). Panels (c) and 
(d) compare the real and imaginary part of the critical eigenvalue of the discrete soliton (blue solid line) and the critical multiplier of the corresponding breather of the dKG 
equation (red dashed line) for varying ε.
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Fig. A.6. Time dynamics of the unstable breather (a) and discrete soliton (b) shown in Fig. A.3. Note that the time variable in the second panel has been scaled to the original 
one.
soliton approximation. We can observe that in both cases the in-
stability destroys localised solutions, i.e., we also obtain qualitative 
agreement in the instability dynamics.

Finally, for the sake of completeness, we studied the typical dy-
namics of dKG breathers when they experience an exponential in-
stability, i.e., the critical Floquet multipliers are real. In Figs. A.5(c) 
and A.5(d), they are in a finite interval close to the uncoupled limit 
ε = 0 and their absolute magnitudes are near unity. Due to these 
facts, we could not clearly see any instability in our simulations, 
even after integrating the dKG equation for quite a long while.
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