

CHAPTER III

METHODOLOGY OF THE RESEARCH

A. The Method of the Research

The type of this research is experimental research. According to Cresswell (2008, p. 299), experiment is you test an idea (or practice procedures) to determine whether it influences an outcome or dependent variable. The method used in this research was quasi-experimental research that used pre-test and post-test non-equivalent control group design. This design involves two groups, one group for experimental and another group for control.

This research consists of two variables, clozeline strategy is independent variable and symbolized by X, while students' reading comprehension is dependent variable and symbolized by Y. The research can be designed in brief by following table:

Table III. 1 **Research Design**

Group	Pre-Test	Treatment	Post-Test
Experiment	O_1	X	O_1
Control	O_2		O_2

The writer used two classes as sample in conducting this research. One class is for experimental and another class is for control. Both of class was given pre-test, then was given treatment differently, then was given

post-test for both of class. Treatment means that the experimental class was taught by using clozeline strategy and control class was taught by using the usual strategy that is used by the English teacher.

B. The Location and Time of the Research

This research was conducted in State Senior High School 001 Kampar Utara, it is located on Pekanbaru-Air Tiris street Km 42. In addition, the time of the research was from August to November 2015.

C. The Subject and Object of the Research

The subject of this research was the second year students of State Senior High School 001 Kampar Utara. Then, the object of the research was the effect of using clozeline strategy towards students' reading comprehension of the students at State Senior High School 001 Kampar Utara.

D. Population and Sample of the Research.

1. The Population

The population of this research was the second year students of State Senior High School 001 Kampar Utara. The total number of population was 130 students; it was divided into five classes. The writer took two classes as sample by using cluster sampling.

TABLE III.2
The Population of the Second Year Students of State Senior High
School 001 Kampar Utara

No	Class	The number of Students
1.	XI A	24 Students
2.	XI B	23 students
3.	XI C	30 students
4.	XI D	27 students
5.	XI E	26 students
	Total	130 Students

2. The Sample

The population above was large enough, therefore the researcher took the sample of the population of the research by using cluster random sampling. The researcher used this technique because the students were homogenous and this technique was selected the sample is not individual but group. According to Gay and Peter (2000, p. 129) cluster random sampling selects groups, not individuals. All the members of selected groups had similar characteristics. So, the research took two classes as sample. The researcher took two classes for the sample by using cluster random sampling. In this research, the researcher took the groups by using lottery. The researcher made the paper rolls, and then selected it randomly. The class was XI A for experimental class and XI B for control class.

TABLE III.3

The Sample of the Research is the Second Year Students of State
Senior High School 001 Kampar Utara

No	Group	Class	Number Of Student
1	Experimental class	XIA	24
2 Control class XI B		23	
	Total		47 students

Based on the table above, it was clear that the experimental class consisted of 24 students and control class also consisted of 23 students. So, the number of both experimental class and control class was 47 students.

E. The Technique of Collecting the Data

The writer used test to collect the data for this research. The type of test was multiple choices that consist of thirty items. It was divided into two types – pre-test and post-test. Pre-test and post-test were given to both of classes.

After the students did the test, the writer then took the total score from the result of the reading comprehension test. Then, the writer took the total score from the result of the reading comprehension test. According to Arikunto (2009, p 245) the classification of the students' score is shown below:

State Islanic Oniversity of Sulfan Syden Nashii Nidu

Table III. 4 The Classification of students' Score

Score	Categories
80-100	Very good
66-79	Good
56-65	Enough
40-55	Less
30-39	Fail

Finally, the result of the test in control and experimental classes was compared. By this result, the researcher could identify, whether or not there is an effective technique that can be used in improving students' reading comprehension on narrative text.

F. The Validity of the Test

According to Brown (2003, p. 3) validity is the extent to which inferences made from assessment result are appropriate, meaningful, and useful in terms on the purpose of the assessment. A validity of the test is achieved if the test really measures the test-takers' ability. Furthermore, Hughes (2005, p.26) stated that a test is said to be valid if it measures accurately what it is intended to measure.

According to Hartono (2008, p 84) validity of the research instrument such as test, questionnaire, and observation can analyzed by doing factor analysis i.e. by correlating between instrument item score and total score. This can be done by using correlation of product moment, and then the formula is:

 $r_{xy} = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{\left[n(\sum X^2) - (\sum X)^2\right]\left[n(\sum Y^2) - (\sum Y)^2\right]}}$

Where:

: coefficient of correlation each instrument item r_{xy}

n: total number of respondent

X : score of each item

Y : total score

The term in taking decision is:

- If r calculated > r table, then the instrument item has significant a. correlation toward total score, so it is valid.
- b. If r calculated < r table, then the instrument item has no significant correlation toward total score, so it is invalid.

According to Heaton (1988, p. 159)stated that there are five categories of validity, they are:

Table III. 5 The Category of Validity

No	Proportion correct (p)	Item Category
1	P > 0.70	Easy
2	$0.30 \le P \le 0.70$	Average
3	P < 0.30	Difficult

The researcher used SPSS. 17.0 to find out the scores of instrument item validity. The result is shown in the table below:

Table III. 6 The Result of Validity

No	Item No	r _{xy}	$\mathbf{r}_{ ext{table}}$	Category	Inf
1	Item 1	0,433	0,374	Average (enough)	Valid
2	Item 2	0,458	0,374	Average (enough)	Valid
3	Item 3	0,592	0,374	Average (enough)	Valid
4	Item 4	0,381	0,374	Low (less)	Valid
5	Item 5	0,512	0,374	Average (enough)	Valid
6	Item 6	0,591	0,374	Average (enough)	Valid
7	Item 7	0,395	0,374	Low (less)	Valid
8	Item 8	0,462	0,374	Average (enough)	Valid
9	Item 9	0,512	0,374	Average (enough)	Valid
10	Item 10	0,398	0,374	Low (less)	Valid
11	Item 11	0,412	0,374	Average (enough)	Valid
12	Item 12	0,378	0,374	Low (less)	Valid
13	Item 13	0,42	0,374	Average (enough)	Valid
14	Item 14	0,392	0,374	Low (less)	Valid
15	Item 15	0,392	0,374	Low (less)	Valid
16	Item 16	0,406	0,374	Average (enough)	Valid
17	Item 17	0,407	0,374	Average (enough)	Valid
18	Item 18	0,381	0,374	Low (less)	Valid
19	Item 19	0,606	0,374	High (good)	Valid
20	Item 20	0,517	0,374	Average (enough)	Valid
21	Item 21	0,387	0,374	Low (less)	Valid
22	Item 22	0,757	0,374	High (good)	Valid
23	Item 23	0,443	0,374	Average (enough)	Valid
24	Item 24	0,533	0,374	Average (enough)	Valid
25	Item 25	0,428	0,374	Average (enough)	Valid
26	Item 26	0,383	0,374	Low (less)	Valid
27	Item 27	0,391	0,374	Low (less)	Valid
28	Item 28	0,395	0,374	Low (less)	Valid
29	Item 29	0,612	0,374	High (good)	Valid
30	Item 30	0,418	0,374	Average (enough)	Valid

Table above shows that all of correlation coefficient for each instrument item is higher than t table (rxy>rtable). Then all of the items of the test are valid. The item number 7, 10, 12, 14, 15, 18, 21, 26, 27, and 28 are categorized Low (less). The item number 1, 2, 3, 5, 6, 8, 9, 11, 13, 16, 17, 20, 23, 24, 25 and 30are categorized Average (enough). The item

Gk UIN Suska R

State Islamic University of Sultan Syarif K

number 19, 22, and 29 are categorized High (good). Then the entire item is valid and it can be used to take the data of research.

G. The Reliability of the Test

A test must first be reliable as measuring instrument. According to Miles and Banyard (2007, p. 270) reliability is a necessary characteristic of any good test. Reliability refers to whether a test measures something well. The researcher analyzed reliability of the instrument by using Cronbach's Alpha formula (Arikunto, 2002, p. 193):

$$r_{11} = \left[\frac{k}{k-1}\right] \left[1 - \frac{\sum \sigma_b^2}{V_t^2}\right]$$

Where:

 r_{11} : reliability of the instrument

k : total number of item

 $\sum \sigma_h^2$: total of each item variance

V_t² : total of variance

According to Guilford (1956, p. 145, in thesis Aulia Ika Putri 2016) stated that there are five categories of validity, they are:

Table III. 7
The Category of Reliability

No	Score	Category
1	$0.80 < r_{11} \le 1.00$	Very high
2	$0.60 < r_{11} \le 0.79$	High
3	$0.40 < r_{11} \le 0.49$	Average
4	$0.20 < r_{11} \le 0.39$	Low
5	$-1.00 \le r_{11} \le 0.19$	Very low (unreliable)

© Hak cipta milik UIN Suska

The researcher used SPSS. 17.0 to find out the scores of reliability of the instrument. The result is shown in the table below:

Table III. 8
The Result Reliability

Cronbach's Alpha	N of Items
.871	30

Based on the table above, it is known that the score of Cronbach's alpha is 0.871. The total item is 30. Then the reliability of the instrument is categorized Very High.

H. The Technique of Analyzing the Data

The writer analyzed the data by using SPSS program. There were two groups in this research, so the writer used independent sample t-test to find out the effect of using clozeline strategy toward students' reading comprehension. The formula is:

$$d = \frac{M_2 - M_1}{\sqrt{\frac{S_1^2 + S_2^2}{2}}}$$

Where:

t_o : The value of t_{obtained}

M_x : Mean score of experimental class

M_v : Mean score of control class

SD_x : Standard deviation of experimental class

 SD_{v} : Standard deviation of control class

N : Number of the students

After computing t-test, it obtains the degree of freedom that is used to determine whether the t-obtained is significant or not. The obtained value is consulted with the value of t-table by using degree of freedom (df) = (NI+N2)-2 statically hypothesis:

- 1. H_o is accepted if t_o <t_{table} or there is no significant effect of using clozeline strategy toward students' reading comprehension on narrative text at State Senior High School 001 Kampar Utara.
- 2. H_a is accepted if t_o>t_{table} or there is any significant effect of using clozeline strategy toward students' reading comprehension on narrative text at State Senior High School 001 Kampar Utara.