

На

7

Dilarang mengutip

sebagian

atau seluruh kanya

tulis

ini tanpa mencantumkan dan

menyebutkan sumber

Kasim

Riau

N

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

4.1 Pengumpulan Data

Pengumpulan data dilakukan berdasarkan hasil wawancara dan observasi langsung ke Dinas Badan Ketahanan Pangan. Adapun data-data yang dikumpulkan adalah sebagai berikut.

4.1.1 Profil Instansi

Dinas Badan Ketahanan Pangan Provinsi Riau merupakan salah satu dinas yang bergerak di bidang pangan. Kantor ini beralamat di Jalan Kuantan raya No. 27 Pekanbaru. Berikut ini adalah Struktur Organisasi Dinas Badan Ketahanan Pangan Provinsi Riau 2017.

Gambar 4.1 Struktur Organisasi Badan Ketahanan Pangan Provinsi Riau (Dinas Badan Ketahan Pangan Provinsi Riau, 2017)

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

00

Pengutipan

hanya untuk kepentingan pendidikan, penelitian,

sebagian atau seluruh karya tulis

ini tanpa mencantumkan dan menyebutkan sumber

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

N

4.1.2 Visi dan Misi Dinas Badan Ketahanan Pangan Provinsi Riau

Visi Dinas Badan Ketahanan Pangan Provinsi Riau adalah "Terwujudnya Lembaga yang Handal Dalam Memantapkan Ketahanan Pangan Masyarakat yang Berbasis Sumber Daya Lokal Menuju Kemandirian Pangan".

Dalam upaya untuk mewujudkan visi yang telah ditetapkan, maka Badan Ketahanan Pangan Provinsi Riau telah merumuskan misi sebagai berikut :

1. Mewujudkan tata kelola lembaga yang baik berbasis teknologi informasi didukung oleh sumber daya aparatur yang kompeten dan berintegritas tinggi.

Misi ini diarahkan untuk mewujudkan peningkatan tata kelola lembaga melalui penyelenggaraan pemerintahan yang transparan dan akuntabel, dengan didukung sumber daya aparatur yang profesional dan memiliki integritas tinggi serta pemanfaatan teknologi informasi untuk mencapai pelayanan prima.

1. Meningkatkan ketersediaan, keterjangkauan dan akses pangan serta penanganan kerawanan pangan.

Misi ini diarahkan untuk memantapkan ketahanan pangan Provinsi Riau melalui peningkatan ketersediaan, keterjangkauan dan akses pangan serta penanganan kerawanan pangan.

3. Meningkatkan penganekaragaman dan mutu pangan.

Misi ini diarahkan untuk memantapkan ketahanan pangan melalui peningkatan penganekaragaman dan mutu pangan berbasis bahan baku, sumber daya dan kearifan lokal.

4.1.3 Keadaan Alam dan Letak Geografis Provinsi Riau

Berdasarkan data dari Kanwil Badan Pertahanan Nasional Provinsi Riau, Provinsi Riau memiliki luas area sebesar 8.195.016 hektar. Keberadaannya membentang dari lereng Bukit Barisan sampai dengan Selat Melaka, terletak antara 01°05'00'' Lintang Selatan sampai 02°25'00'' Lintang Utara atau antara 100°00'00'' Bujur Timur - 105°05'00'' Bujur Timur.

Luas Daratan Provinsi Riau 89.150,15 km² untuk lebih jelasnya dapat dilihat pada Tabel 4.1 berikut.

00

9

N

I	T Kabupaten/Kota di Fiovilisi Kiau						
No	Kabupaten	Ibukota	Luas (Ha)	Persentase Luas (%)			
1	Kuantan Singingi	Teluk Kuantan	520.216	5,84			
2	Indragiri Hulu	Rengat	767.627	8,61			
3	Indragiri Hilir	Tembilahan	1.379.837	15,48			
4	Pelalawan	Pangkalan Kerinci	1.240.414	13,91			
5	Siak	Siak Sri Indrapura	823.357	9,24			
6	Kampar	Bangkinang	1.092.820	12,26			
7	Rokan Hulu	Pasir Pangarayan	722.978	8,11			
8	Bengkalis	Bengkalis	843.720	9,46			
9	Rokan Hilir	Bagan Siapi-api	896.143	10,05			
10	Kep. Meranti	Selat Panjang	360.703	4,05			
11	Pekanbaru	Pekanbaru	63.301	0,71			
12	Dumai	Dumai	203.900	2,29			
R	Total Riau		8.915.016	100,00			

Tabel 4.1 Nama-nama Ibukota dan Luas Wilayah Daratan Masing-masing
Kabupaten/Kota di Provinsi Riau

Sumber: Badan Pusat Statistik Provinsi Riau (2017)

4.1.4 Data Jumlah Penduduk

Dapat dilihat pada Tabel 4.2 berikut ini adalah data jumlah penduduk Kabupaten/Kota Se-Provinsi Riau Tahun 2005-2015.

No	Tahun	Jumlah Penduduk (Jiwa)
1	2005	4.513.973
2	2006	4.722.397
3	2007	4.847.076
4	2008	4.890.399
5	2009	5.123.360
6	2010	5.542.761
57	2011	5.738.543
8	2012	5.929.172
9	2013	6.125.283
10	2014	6.189.442
11	2015	6.344.402

Sumber: Badan Pusat Statistik Provinsi Riau (2017)

ersity of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip

Pengutipan

hanya untuk

kepentingan pendidikan, penelitian,

N

4.1.5 Data Ketersediaan jagung

Ketersediaan jagung adalah jumlah produksi jagung ditambah jumlah impor jagung. Berikut ini adalah data ketersediaan jagung untuk Provinsi Riau Tahun 2005-2015 dapat dilihat pada Tabel 4.3.

No	Tahun	Jumlah Produksi (Ton/Tahun)	Jumlah Impor (Ton/Tahun)	Ketersediaan jagung (Ton/Tahun)
1	2005	36.421	7.856	44.277
2	2006	34.728	6.549	41.277
3	2007	40.410	6.590	47.000
-4	2008	47.959	6.422	54.381
5	2009	56.521	5.698	62.219
6	2010	41.862	8.537	50.399
77	2011	33.197	8.695	41.892
8	2012	31.433	8.768	40.201
9	2013	28.052	8.931	36.983
10	2014	28.651	9.089	37.740
11	2015	30.870	9.248	40.118

Tabel 4.3 Data Ketersediaan jagung

naman Pangan, Holtilkultura dan Perkebunan Provinsi Riau

Berikut ini adalah gambar grafik perkembangan ketersediaan jagung dari tahun 2005 sampai 2015.

Dari grafik dapat dilihat bahwa ketersediaan jagung dari Tahun 2005-2015 S selalu mengalami kenaikan dan penurunan.

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Kasim Riau

Dilarang mengutip

Pengutipan

hanya untuk kepentingan pendidikan, penelitian,

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

an Syarif Kasim Riau

4.1.6 Data Luas Panen Jagung

Luas panen adalah luas hasil usahatani atau kegiatan budidaya jagung dalam hektar. Berikut ini adalah data luas panen jagung Provinsi Riau Tahun 2005-2015 dapat dilihat pada Tabel 4.4.

Tahun	Luas Panen Jagung (Ha)
2005	16.524
2006	15.539
2007	18.379
2008	21.397
2009	25.016
2010	18.044
2011	14.139
2012	13.284
2013	11.748
2014	12.057
2015	12.425
	Tahun 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Tabel 4.4 Data Luas Panen Jagung Provinsi Riau

Sumber: Dinas Badan Ketahanan Pangan Provinsi Riau (2017)

4.1.7 Data Harga Domestik Jagung

Harga domestik jagung adalah harga yang ditetapkan oleh pasar Provinsi Riau dalam satuan Rupiah/Ton/Tahun. Berikut ini adalah data harga domestik jagung Provinsi Riau dapat dilihat pada Tabel 4.5.

No	Tahun	Harga Domestik (Rp/Ton/Tahun)
1	2005	1.980.873
2	2006	1.882.469
3	2007	1.685.660
-4	2008	1.663.100
5	2009	1.691.500
6	2010	1.833.000
7	2011	2.117.000
8	2012	2.087.000
9	2013	2.192.000
10	2014	3.172.000
ch1	2015	3.385.000

Tabel 4.5 D	Data Harga	Domestik	Jagung
-------------	------------	----------	--------

Sumber: Dinas Tanaman Pangan, Holtilkultura dan Perkebunan Provinsi Riau (2017)

4.1.8 Data Jumlah Tenaga Kerja

Tenaga kerja adalah setiap orang yang mampu bekerja atau melakukan pekerjaan di bidang pertanian dalam satuan jiwa. Berikut ini adalah data jumlah tenaga kerja di bidang pertanian Provinsi Riau Tahun 2005-2015 dapat dilihat pada Tabel 4.6.

T114(D)	T 117T	TZ ' 1'	D'1 D	· · D	· · D'
Label /L 6 Llata	lumian Lenada	A K Ar19 d1	Bidang Per	rtanian Pr	$\alpha v_1 n c_1 R (19)$
	Juman renage	i ixci ja ui	Digang I C	uaman 11	Ovinoi Mau
	0		0		

No	Tahun	Jumlah Tenaga Kerja (Jiwa)		
1	2005	4.399.699		
2	2006	4.074.774		
3	2007	3.845.341		
4	2008	3.834.093		
5	2009	4.255.602		
6	2010	4.468.816		
07	2011	3.987.998		
8	2012	4.203.091		
9	2013	4.571.093		
10	2014	4.276.453		
11	2015	3.880.703		

Sumber: Dinas Tanaman Pangan, Holtilkultura dan Perkebunan Provinsi Riau (2017)

State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

9 Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Dilarang mengutip

Pengutipan

hanya untuk kepentingan pendidikan, penelitian,

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

N

4.2 Pengolahan Data

Setelah melakukan pengumpulan data, maka selanjutnya adalah pengolahan data. Pengolahan data dilakukan sebagai berikut.

4.2.1 Identifikasi Variabel yang Mempengaruhi Ketersediaan jagung

Pada bagian ini akan membahas perkembangan ketersediaan jagung. Berdasarkan hasil wawancara dengan Ibu Santi dari Dinas Tanaman Pangan, Holtikultura dan Perkebunan bagian perencanaan sektor jagung Provinsi Riau, ada 4 faktor yang mempengaruhi ketersediaan jagung yaitu luas panen jagung, harga domestik jagung, jumlah penduduk dan jumlah tenaga kerja. Sehingga dari faktorfaktor tersebut dapat dibuat persamaan sebagai berikut.

 $Y = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + e$

Dimana : Y =

- a = Konstanta Intersep
- b = Koefisien Variabel Regresi
- X_1 = Luas Panen Jagung (Ha)
- X_2 = Harga Domestik Jagung (Rp/Ton/Tahun)
- $X_3 =$ Jumlah Penduduk (Jiwa)
- X₄ = Jumlah Tenaga Kerja Petani (Jiwa)

Ketersediaan jagung (Ton)

e = Error

4.2.2 Uji Asumsi Klasik

Sebelum melakukan analisis regresi, terlebih dahulu dilakukan uji asumsi klasik yang harus dipenuhi, yaitu :

1. Uji Autokorelasi

Selanjutnya adalah pengujian autokorelasi secara manual.

a. Menghitung nilai Y_{pred}.

Tabel 4.7 Nilai Y_{pred}

Riau

No	\mathbf{X}_1	X ₂	X ₃	\mathbf{X}_4	Y	Y _{pred}
1	16.524	1.980.873	4.513.973	4.399.699	44.277	41.713,74
2	15.539	1.882.469	4.722.397	4.074.774	41.277	39.732,24
3	18.379	1.685.660	4.847.076	3.845.341	47.000	45.730,37

Sumber: Pengolahan Data (2017)

Ċ,

No	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	Y	Ypred
യ4	21.397	1.663.100	4.890.399	3.834.093	54.381	52.158,66
5	25.016	1.691.500	5.123.360	4.255.602	62.219	60.664,08
6	18.044	1.833.000	5.542.761	4.468.816	50.399	47.040,04
007	14.139	2.117.000	5.738.543	3.987.998	41.892	38.730,76
8	13.284	2.087.000	5.929.172	4.203.091	40.201	37.527,33
-9	11.748	2.192.000	6.125.283	4.571.093	36.983	35.054,28
10	12.057	3.172.000	6.189.442	4.276.453	37.740	35.538,40
11	12.425	3.385.000	6.344.402	3.880.703	40.118	36.227,21

Tabel 4.7 Nilai Y_{pred} (Lanjutan)

Sumber: Pengolahan Data (2017)

b. Menghitung nilai kuadrat residual dan nilai kuadrat residual yang telah di Ka

Lag-kan.

Tabel 4 8 Nilai Residual

No	е	e^2	e _{t-1}	$(e - e_{t-1})$	$(e - e_{t-1})^2$
1	2.563,26	6.570.281,32			
2	1.544,76	2.386.277,28	2.563,26	-1.018,50	1.037.338,18
3	1.269,63	1.611.967,95	1.544,76	-275,13	75.693,77
4	2.222,35	4.938.817,30	1.269,63	952,71	907.660,15
5	1.554,92	2.417.773,10	2.222,35	-667,43	445.457,47
6	3.358,96	11.282.632,44	1.554,92	1.804,04	3.254.574,75
7	3.161,24	9.993.450,98	3.358,96	197,72	39.093,59
8	2.673,67	7.148.489,88	3.161,24	487,58	237.730,36
9	1.928,72	3.719.968,55	2.673,67	744,94	554.941,56
10	2.201,60	4.847.038,16	1.928,72	272,88	74.461,86
11	3.890,79	15.138.239,04	2.201,60	1.689,19	2.853.362,86
12	1	70.054.936,00			9.480.314,54

Sumber: Pengolahan Data (2017)

=

Syarif Kasim Riau

$$\mathbf{DW} = \frac{(\mathbf{e} - \mathbf{e}_{t-1})^2}{(\mathbf{e}_t)^2} = \frac{9.480.314,54}{70.054.936,00} = 0,1353$$

Berdasarkan perhitungan manual, dapat dilihat bahwa nilai Durbin-Watsonnya 0,1353 2, oleh karena itu, dapat adalah 0,1353. Berarti nilai DW berada -2 disimpulkan bahwa tidak terjadi autokorelasi yang berarti tidak ada variabel bebas yang mengganggu hubungan antara variabel bebas lainnya dengan variabel terikat.

Hak Cipta Dilindungi Undang-Undang

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Uji autokorelasi dapat dilihat dari nilai Durbin-Watson pada hasil pengolahan Hak cipta milik UIN Suska SPSS. Adapun langkah-langkah untuk melihat nilai Durbin-Watson pada SPSS adalah sebagai berikut.

a. Input data variabel Y, X1, X2, X3 dan X4 seperti yang terlihat pada Gambar

4.3 di bawah ini.

<u>F</u> ile <u>E</u> dit <u>∨</u> ie	ew <u>D</u> ata <u>T</u> ran	isform <u>A</u> naly	ze <u>G</u> raphs	Utilities Add-or	ns <u>Wi</u> ndow	<u>H</u> elp
🗁 📕 🚉 🚦	· • • •		🐴 📲 📩 🗄	- 🗗 📑 🤇	¥ 🕘 🖣 🤻	
1:y	44277	.0				
	у	x1	x2	xЗ	x4	Var
1	44277.00	16524.00	1980873.00	4513973.00	4399699.00	
2	41277.00	15539.00	1882469.00	4722397.00	4074774.00	
3	47000.00	18379.00	1685660.00	4847076.00	3845341.00	
4	54381.00	21397.00	1663100.00	4890399.00	3834093.00	
5	62219.00	25016.00	1691500.00	5123360.00	4255602.00	
6	50399.00	18044.00	1833000.00	5542761.00	4468816.00	
7	41892.00	14139.00	2117000.00	5738543.00	3987998.00	
8	40201.00	13284.00	2087000.00	5929172.00	4203091.00	
9	36983.00	11748.00	2192000.00	6125283.00	4571093.00	
10	37740.00	12057.00	3172000.00	6189442.00	4276453.00	
11	40118.00	12425.00	3385000.00	6344402.00	3880703.00	
12						

Gambar 4.3 Input Variabel (Sumber: SPSS, 2017)

b. Kemudian klik menu Analysis, lalu klik submenu Regression dan pilih sub-sub menu linear seperti Gambar 4.4.

Ele Edt ⊻e (⇔ III "Ph. II	w Lata Irana	rom <u>Anayze</u> <u>G</u> rachs	Junies //odigans wymolow/ Help
— шрана 1 у	44277.3	Descriptive Salis i	
1 2 2 4	y 44277 01 41277.00 4/000.01 54381.00	v1 Falgles 1677 NTM Analysis 1657 Compare Means 1833 Conoral Linbar Mon 2134 Generalized Fill File	
E 7	62219.00 57099.07 41892.00	2501 Mixed Models 1004 Quinelate 1113 Begression	4265602.00 Adom/6.00 K. Lnear
= =	40201.00 07900.01	 1328 Locinear 177 Neural Nelgzurks Clearling 	Corve Estimation Refrid Least Squares
10 11 12 13	37710.01 4_118.01	206 Classicy 222 Dimonsion Recuelle Stat- Nonparametric Las	Image: Spin and Logistic Image: S
14 15 16 17		Forecasting Survivel Wubicle Response Wissing Value Ana	six 2-Stage Lease Squeres
18 19 20		Multicle Imputation Conclex Semples Quality Control	Continual Scaling (CATRES)

Gambar 4.4 Pilih Sub-Menu Linear (Sumber: SPSS, 2017)

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh kanya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

State Islamic University of Sultan Syarif Kasim Riau

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Hak cipta milik UIN Suska

State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

- Dilarang mengutip sebagian atau seluruh kanya tulis ini tanpa mencantumkan dan menyebutkan sumber
- 9 Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Block Variabel X_1 ,	X ₂ , X ₃ dan X ₄ untuk mengisi bagian Ind	ependent.
Untuk lebih jelas dap	pat dilihat pada Gambar 4.5 berikut ini.	
Linear Regression		
 ✓ x1 ✓ x2 ✓ x3 ✓ x4 	Dependent: Dependent: Plots Plots Plots Save Options Method	
	Selection Variable:	
	Case Labels:	
	WLS Weight:	
OK	Cancel Help	

c. Kemudian akan muncul kotak dialog Linear Regression, klik Variabel Y

kemudian tekan anak panah warna biru untuk mengisi Dependent. Dan

Gambar 4.5 Input Linear Regression (Sumber: SPSS, 2017)

d. Selanjutnya, klik tab Statistics, dan ceklis bagian Durbin-Watson dan klik Continue kemudian klik OK.

legression Coefficient	Model fit
Estimates	R squared change
Confidence intervals	Descriptives
Level(%): 95	Part and partial correlations
Covariance matrix	Collinearity diagnostics
siduals	
🗹 Durbin-Watson	
 Casewise diagnostics	ICKAR
O Qutliers outside:	3 standard deviations
O All cases	

Gambar 4.6 Linear Regression Durbin-Watson (Sumber: SPSS, 2017)

Pengutipan

e. Setelah klik OK, maka akan muncul Output Durbin-Watson seperti yang terlihat pada Tabel 4.7 berikut.

Tabel 4.9 Nilai Durbin-Watson

ip	Model Summary ^b									
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson					
	0,996 ^a	0,992	0,987	888,33499	1,833					
a. Predic	ctors: (Co	onstant), X4	, X1, X2, X3							
b. Deper	ndent Vai	riable: Y								
Sumber	: SPSS (2017)								

Hak Cipta Dilindungi Undang-Undang

Berdasarkan Tabel 4.7, dapat dilihat bahwa nilai Durbin-Watsonnya adalah 1,833. Berarti nilai DW berada -2 1,833 2, oleh karena itu, dapat disimpulkan bahwa tidak terjadi autokorelasi yang berarti tidak ada variabel bebas yang mengganggu hubungan antara variabel bebas lainnya dengan variabel terikat.

Uji Multikolinieritas 2.

Uji multikolinieritas dapat dilihat dari nilai tolerance yang lebih dari 0,10 dan nilai VIF yang kurang dari 10. Adapun langkah-langkah untuk nilai tolerance dan VIF adalah sebagai berikut.

a. Input data variabel Y, X₁, X₂, X₃ dan X₄ seperti yang terlihat pada Gambar 4.7 di bawah ini.

Elle Ealt Vi	ew Data Tran	storm <u>A</u> naly	nze <u>G</u> raphs Ma ♦ ∎ 📩 🛔	Utilities Add-Or	ns <u>vv</u> indow	Help
1:y	44277	.0]
	у	x1	х2	x3	x4	var
1	44277.00	16524.00	1980873.00	4513973.00	4399699.00	
2	41277.00	15539.00	1882469.00	4722397.00	4074774.00	
3	47000.00	18379.00	1685660.00	4847076.00	3845341.00	
4	54381.00	21397.00	1663100.00	4890399.00	3834093.00	
5	62219.00	25016.00	1691500.00	5123360.00	4255602.00	
6	50399.00	18044.00	1833000.00	5542761.00	4468816.00	
7	41892.00	14139.00	2117000.00	5738543.00	3987998.00	
8	40201.00	13284.00	2087000.00	5929172.00	4203091.00	
9	36983.00	11748.00	2192000.00	6125283.00	4571093.00	
10	37740.00	12057.00	3172000.00	6189442.00	4276453.00	
11	40118.00	12425.00	3385000.00	6344402.00	3880703.00	
12						

Gambar 4.7 Input Variabel (Sumber: SPSS, 2017)

N Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

State Islamic University of Sultan Syarif Kasim Riau

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

hanya untuk kepentingan pendidikan, penelitian,

b. Kemudian klik menu *Analysis*, lalu klik submenu *Regression* dan pilih sub-sub menu *linear* seperti Gambar 4.8.

Cie Eur -	ew Daia Trai	bal t	Deve de	Abu .	Une I		Derb		
			Hopono De una interna Statiania	1	a l		8		
1 y	14277	J.	Design (verschust) s	1	L				
	у	- 51	ISCIEC	1		74	var	7at	V
1	44277 NT	1651	N M Analysis	1	4	00 663662			
2	41277.00	1663	Co <u>m</u> care Means	. *	- 4	077774.00			
12	4/000.02	1837	Concral Linear Model	. *	1.2	845341.00			
4	54381.00	2139	Generaliged Fillear Models	+	3	834093.00			
Ξ	62219.00	2501	Mixed Models	. *	4	255602.00			
7	57099.07	- m	Qomelate		1	100016-00			
7	41892.00	11:	Regression	Þ	Ki I	_near			
-	4.201.01	1328	Loclinear	•	7	Ourve Estimati	ion		
(E)	07900.07	174	Neural Net <u>vz</u> urka	•	R	Partial Leagt S	Squares		
10	37710.00	20(Classi <u>'y</u>	Þ	R	inary Locistic			
11	4_118.0_	122	Dimension Recuelion		К.,	vutinomiai Lo	alstic		
12			Si <u>a</u> l-	•	R	- Creinsl			
13			Nonparametric Lasta	•	R	- ucil			
14			Forecasting	•		-			
15			Survivel	÷	FUR !	ğı olmeər			
16			Muticle Response		WIS	Weight Estima	fion		
17		Į	🔀 Missing Value Anal <u>y</u> sis 👘		2.5	2-Stage Least	Squeres		
18			Multicle Imputation	н	1	Optimal Spalin	g (CATREG).		
19			Conclex Sengles	+	-				
20			<u>G</u> uality Control	×.	-				
/1		1	ROC Curvo						
22		L		-	-				

Gambar 4.8 Pilih Sub-Menu *Linear* (Sumber: SPSS, 2017)

c. Kemudian akan muncul kotak dialog *Linear Regression*, klik Variabel X₁
kemudian tekan anak panah warna biru untuk mengisi *Dependent*. Dan *Block* Variabel X₂, X₃ dan X₄ untuk mengisi bagian *Independent*. Untuk lebih jelas dapat dilihat pada Gambar 4.9 berikut ini.

Gambar 4.9 Input Linear Regression (Sumber: SPSS, 2017)

State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber
- Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

d. Selanjutnya, klik tab Statistics, dan ceklis bagian Collinearity Diagnotics Hak cipta milik UIN Suska dan klik Continue kemudian klik OK.

Regression Coefficient	Model fit
<u> </u>	R squared change
Confidence intervals	Descriptives
Level(%): 95	Part and partial correlations
✓ Covariance matrix	Collinearity diagnostics
Residuals	
Durbin-Watson	
Casewise diagnostics	
Outliers outside:	3 standard deviations
○ <u>A</u> ll cases	

Gambar 4.10 Linear Regression Collinearity Diagnotics (Sumber: SPSS, 2017)

e. Setelah klik OK, maka akan muncul Output Collinearity Statistics seperti yang terlihat pada Tabel 4.8 berikut.

Tabel 4.10 *Tolerance* dan VIF untuk Uji Multikolinieritas

		J		
Mode	$(Dopondont - x^1)$	Collinearity	y Statistics	D. Sayana Changa
S	(Dependent - x1)	Tolerance	VIF	K Square Change
at	x2	0,414	2,417	
eI	x3	0,402	2,487	0,535
s s	x4	0,906	1,103	
Mada	(D	Collinearity	y Statistics	D. Commun. Channes
wiode	$(Dependent = x_2)$	Tolerance		K Square Change
Jn	x1	0,564	1,773	
ive	x3	0,564	1,774	0,659
PIS	x4	0,964	1,037	
SA. L		Collinearity Statistics		
Mode	(Dependent = X3)	Tolerance		K Square Change
5	x1	0,494	2,026	
ult	x2	0,508	1,970	0,621
an	x4	0,924	1,082	
1	GDGG (2017)		·	

Sumber: SPSS (2017)

arif Kasim Riau

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

- 00 Ċ, Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Model (Dependent = x4)		Collinearit	y Statistics	D. C	
		Tolerance		K Square Change	
~	x1	0,484	2,067		
	x2	0,378	2,647	0,129	
the second secon	x3	0,402	2,487		

Tabel 4.10 *Tolerance* dan VIF untuk Uji Multikolinieritas (Lanjutan)

Sumber: SPSS (2017)

- ~ Berikut ini adalah langkah-langkah melakukan uji multikolinieritas.
- NID a. Menghitung nilai VIF X1, X2, X3 dan X4 yang terlihat pada Tabel 4.8 di atas.
- uska b. Menghitung koefisien determinasi dari regresi variabel bebas, dapat dilihat
 - pada Tabel 4.8 di atas.
- Ria c. Menghitung nilai Tolerance (TOL):
 - TOL $X_1 = (1 Rj^2) = 1 0,535 = 0,465$ TOL $X_2 = (1 - Rj^2) = 1 - 0,659 = 0,341$ TOL $X_3 = (1 - Rj^2) = 1 - 0,621 = 0,379$ TOL $X_4 = (1 - Rj^2) = 1 - 0,129 = 0,871$
 - d. Menghitung nilai Variance Inflation Factor (VIF) dengan rumus:

VIF
$$X_1 = \frac{1}{\text{TOL}} = \frac{1}{0,465} = 2,1505$$

VIF
$$X_2 = \frac{1}{\text{TOL}} = \frac{1}{0,341} = 2,9325$$

VIF
$$X_3 = \frac{1}{\text{TOL}} = \frac{1}{0,379} = 2,6385$$

VIF $X_4 = \frac{1}{\text{TOL}} = \frac{1}{0,971} = 1,1481$

lan 1,1481 lebih kecil dari 10, maka pada model regresi yang terbentuk tidak terjadi gejala multikolinieritas pada masing-masing variabel bebas. Hal ini berarti tidak terjadi korelasi antar variabel bebas dalam regresi linier berganda.

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh kanya tulis ini tanpa mencantumkan dan menyebutkan sumber

- Pengutipan Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

State Islamic University of Sultan Syarif Kasim Riau

3. Uji Heteroskedastisitas

Selanjutnya adalah uji heteroskedastisitas dengan menggunakan metode *Rank Spearman*. Untuk melakukan uji dengan metode ini dapat dilihat dari nilai koefisien korelasi *Rank Spearman* dari hasil SPSS berikut ini.

Tabel 4.11 Koefisien Korelasi Rank Spearman

nili			abres	\mathbf{X}_1	X_2	X_3	X_4
K		Correlation Coefficient	1.000	-0,191	0,200	0,173	0,473
Spearman's rho	abres	Sig. (1-tailed)		0,287	0,278	0,306	0,071
S		Ν	11	11	11	11	11

Sumber: SPSS (2017)

Berdasarkan koefisien korelasi di atas, maka dapat dilakukan analisis korelasi *Rank Spearman* untuk menguji apakah koefisien *Rank Spearman* signifikan atau tidak dengan t_{hitung}.

$$t_{\text{hitung}} X_{1} = \frac{xy\sqrt{n-2}}{\sqrt{1-\rho_{xy}}} = \frac{-0,191\sqrt{11-2}}{\sqrt{1-(0,191)}} = -0,583$$

$$t_{\text{hitung}} X_{2} = \frac{xy\sqrt{n-2}}{\sqrt{1-\rho_{xy}}} = \frac{0,200\sqrt{11-2}}{\sqrt{1-(0,200)}} = 0,612$$

$$t_{\text{hitung}} X_{3} = \frac{xy\sqrt{n-2}}{\sqrt{1-\rho_{xy}}} = \frac{0,173\sqrt{11-2}}{\sqrt{1-(0,173)}} = 0,526$$

$$t_{\text{hitung}} X_{4} = \frac{xy\sqrt{n-2}}{\sqrt{1-\rho_{xy}}} = \frac{0,473\sqrt{11-2}}{\sqrt{1-(0,473)}} = 1,610$$

State Islamic University of Sultan

Syarif Kasim Riau

nilai t_{tabel} pada uji heterokedastisitas dengan derajat bebas df = 0,05 dan n-2 = 11-2 = 9 adalah 1,833. Dapat disimpulkan bahwa persamaan pada model regresi ini tidak terdapat gejala heteroskedastisitas dikarenakan nilai t_{hitung} < t_{tabel} yaitu, -0,583; 0,612; 0,526 dan 1,610 lebih kecil dari 1,833.

a. Pengutipan hanya untuk kepentingan pendidikan, penelitian,

sebagian atau seluruh kanya tulis

ini tanpa mencantumkan dan menyebutkan sumber

karya ilmiah,

penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Hak Cipta Dilindungi Undang-Undang

Pengutipan tidak merugikan kepentingan yang wajar **UIN Suska Riau**

Kemudian, uji heteroskedastisitas dapat juga dilihat dari grafik *scatterplot* hasil pengolahan dengan SPSS. Langkah-langkah untuk melihat *scatterplot* tersebut adalah sebagai berikut.

- a. Input data variabel Y, X1, X2, X3 dan X4 seperti yang terlihat pada Gambar
 - 4.11 di bawah ini.

<u>F</u> ile <u>E</u> dit ⊻i	ew <u>D</u> ata <u>T</u> ran	nsform <u>A</u> naly	ze <u>G</u> raphs	Utilities Add-or	ns <u>W</u> indow <u>H</u>	lelp
궏 🗏 🔒 [📴 🦘 萨 🕌		4 🗕 📩	🗄 🥼 📑 🤇 🖗	🖗 🌢 💊	
1 : y	44277	.0		_		
	у	x1	x2	xЗ	x4	Va
1	44277.00	16524.00	1980873.00	4513973.00	4399699.00	
2	41277.00	15539.00	1882469.00	4722397.00	4074774.00	
3	47000.00	18379.00	1685660.00	4847076.00	3845341.00	
4	54381.00	21397.00	1663100.00	4890399.00	3834093.00	
5	62219.00	25016.00	1691500.00	5123360.00	4255602.00	
6	50399.00	18044.00	1833000.00	5542761.00	4468816.00	
7	41892.00	14139.00	2117000.00	5738543.00	3987998.00	
8	40201.00	13284.00	2087000.00	5929172.00	4203091.00	
9	36983.00	11748.00	2192000.00	6125283.00	4571093.00	
10	37740.00	12057.00	3172000.00	6189442.00	4276453.00	
11	40118.00	12425.00	3385000.00	6344402.00	3880703.00	
10						

Gambar 4.11 Input Variabel (Sumber: SPSS, 2017)

b. Kemudian klik menu *Analysis*, lalu klik submenu *Regression* dan pilih sub-sub menu *linear* seperti Gambar 4.12.

Gambar 4.12 Pilih Sub-Menu *Linear* (Sumber: SPSS, 2017)

Hak Cipta Dilindungi Undang-Undang

Hak

milik UIN

Suska

Ria

State Islamic University of Sultan Syarif Kasim Riau

Dilarang sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

- Pengutipan Pengutipan tidak hanya untuk merugikan kepentingan yang wajar kepentingan pendidikan, penelitian, UIN Suska Riau penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

90 g

N

Hak cipta milik UIN Suska

State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

c.	Kemudian akan muncul kotak dialog Linear Regression, klik Variabel Y
	kemudian tekan anak panah warna biru untuk mengisi Dependent. Dan
	Block Variabel X1, X2, X3 dan X4 untuk mengisi bagian Independent.
	Untuk lebih jelas dapat dilihat pada Gambar 4.13 berikut ini.

al set	Dependent: Statistics
✓ x1	Block 1 of 1
🖋 x3	Save
<i>∢</i> ×4	Independent(s):
	Selection Variable:
	Case Labels:
	WLS Weight:

Gambar 4.13 Input Linear Regression (Sumber: SPSS, 2017)

d. Selanjutnya, klik tab Plot, kemudian input Sresid untuk Y dan ZPred untuk X dan klik Continue kemudian klik OK.

DEPENDNT	Scatter 1 of 1	
*ZPRED *ZRESID *DRESID *ADJPRED *SRESID *SDRESID	Preylous Next Y: SRESID X: Z: Z: Z: Preylous	
Standardized Residual Pl	ots Produce all partial plots	
Continue	Cancel Help	

Gambar 4.14 Linear Regression Heteroskedastisitas Plot (Sumber: SPSS, 2017)

e. Setelah klik OK, maka akan muncul Output Scatterplot Heteroskedastisitas seperti yang terlihat pada Gambar 4.15 berikut.

Gambar 4.15 Scatterplot Uji Heteroskedastisitas Ketersediaan jagung (Sumber: SPSS, 2017)

Dari grafik scatterplot di atas dapat dilihat bahwa tidak ada terjadi gejala heteroskedastisitas. Hal ini dikarenakan pada Gambar 4.15 terlihat bahwa titik-titik menyebar secara acak di atas dan di bawah nilai 0 pada Garis Sumbu Y. Sehingga penyebaran nilai varian pada semua variabel bebas adalah sama.

Uji Normalitas 4.

Selanjutnya adalah pengujian normalitas dengan menggunakan Zskew dan Zkurt. Tabel 4.12 berikut adalah nilai koefisien skewness dan koefisien kurtosis berdasarkan hasil SPSS.

Tabel 4.12 Koefisien Skewness dan Kurtosis

live	Skev	vness	Kur	rtosis
TSI	Statistic	Std. Error	Statistic	Std. Error
Standardized Residual	1,349	0,661	2,163	1,279
🤗 Valid N (listwise)				

Sumber: SPSS (2017)

Syarif Kasim Riau

Setelah koefisien skewness dan koefisien kurtosis diketahui, langkah selanjutnya adalah melakukan standarisasi.

IV-18

Hak milik NID uska

Hak Cipta Dilindungi Undang-Undang

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber
- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

- 00 Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

IV-19

 $Zskew = \frac{S-0}{\sqrt{\frac{6}{N}}} = \frac{1,349-0}{\sqrt{\frac{6}{11}}} = 1,826$ $Zkurt = \frac{K - 0}{\sqrt{\frac{24}{N}}} = \frac{2,163 - 0}{\sqrt{\frac{24}{11}}} = 1,464$

4.16 di bawah ini.

© Hak cipta milik UIN Suska Setelah didapat maka selanjutnya membandingkan nilai Zskew dan Zkurt dengan nilai kritisnya. Untuk tingkat toleransi 5% atau 0,05 maka nilai kritisnya ± 1,96. Residual terstandarisasi dikatakan berdistribusi normal apabila Zkew dan Zkurt nilai kritis. Maka dapat disimpulkan bahwa residual pada persamaan ini adalah normal karena nilai Zskew dan Zkurt yaitu 1,826 dan 1,464 1,96.

Uji normalitas dapat juga dilihat dari grafik scatterplot hasil pengolahan dengan SPSS. Langkah-langkah untuk melihat scatterplot normalitas adalah sebagai berikut.

a. Input data variabel Y, X1, X2, X3 dan X4 seperti yang terlihat pada Gambar

Eile Edit V	′jew <u>D</u> ata <u>T</u> rar	nsform <u>A</u> naly	ze <u>G</u> raphs	Utilities Add-or	ns <u>W</u> indow I	<u>H</u> elp
	🖭 🦘 🏞 诸		A 🕴 📩	- T - C	\$ ``	
1:y	44277	1.0				
	у	x1	x2	xЗ	x4	Var
1	44277.00	16524.00	1980873.00	4513973.00	4399699.00	
2	41277.00	15539.00	1882469.00	4722397.00	4074774.00	
3	47000.00	18379.00	1685660.00	4847076.00	3845341.00	
4	54381.00	21397.00	1663100.00	4890399.00	3834093.00	
5	62219.00	25016.00	1691500.00	5123360.00	4255602.00	
6	50399.00	18044.00	1833000.00	5542761.00	4468816.00	
7	41892.00	14139.00	2117000.00	5738543.00	3987998.00	
8	40201.00	13284.00	2087000.00	5929172.00	4203091.00	
9	36983.00	11748.00	2192000.00	6125283.00	4571093.00	
10	37740.00	12057.00	3172000.00	6189442.00	4276453.00	
11	40118.00	12425.00	3385000.00	6344402.00	3880703.00	
4.0						

Gambar 4.16 Input Variabel (Sumber: SPSS, 2017)

State Islamic University of Sultan Syarif Kasim Riau

b. Kemudian klik menu Analysis, lalu klik submenu Regression dan pilih sub-sub menu linear seperti Gambar 4.17.

	an an	w bal b	Devide	 Ex. Ox Bio also
			Rupono Demoklari Oralinia	
1 y	442	<i>11.</i>	Descriptive Salix (is	
	у	>1	I SKEIEC	v4 var var va
1	44277 በ1	1073	RFM Analysis	4099699 00
2	41277.00	1663	Comcare Means	4077774.00
2 C	4/000.01	183	Concral Lincar Modal	E845341.00
4	54381.00	2139	Generalized Linear Models	E834093.00
Ξ	62219.00	2601	Mixed Models	4255602.00
7	57099.07	1004	Qomelate	00.3100016
7	41892.00	113	Regression	▶ K Lnea'
=	4.201.01	1328	Loclinear	 Curve Estimation
Ξ.	07900.01	174	Neural Nel <u>97</u> , rks	Par.ial Least S.J. ares
10	37740.00	: 20(Classily	B. Dinary Locistic
11	4_118.UL	1243	Dimonsion Recuption	K. ivuthomial Logistic
12			ର ଯ-	► & Croinsl
13			Nonparametrio Lasto	B. Pural
14			Forecasting	►
15			Survivel	▶ PLs Moluer
16			Multicle Response	K 2/sight Estimation
17			🔀 Missing Value Anal <u>e</u> sis	🛃 2-Stage Least Squeres
18			Mutjicle Imputation	Optimal Stating (CATREG)
19			Conclex Sendes	•
20			Quality Control	•
/1			ROC Curve	
22				

(Sumber: SPSS, 2017)

c. Kemudian akan muncul kotak dialog Linear Regression, klik Variabel Y kemudian tekan anak panah warna biru untuk mengisi Dependent. Dan Block Variabel X1, X2, X3 dan X4 untuk mengisi bagian Independent. Untuk lebih jelas dapat dilihat pada Gambar 4.18 berikut ini.

Gambar 4.18 Input Linear Regression (Sumber: SPSS, 2017)

Hak cipta milik UIN Suska

State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber
- 9 Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

00

Hak Cipta Dilindungi Undang-Undang

Hak

cipta milik UIN Suska

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

N

d. Selanjutnya, klik tab *Plot*, kemudian ceklis pada bagian *Normal Probability Plot* dan klik *Continue* kemudian klik OK.

*ZPRED	Previous Next
*ZRESID *DRESID	
*ADJPRED	
*SRESID	
*SDRESID	♥ -
- Standardized Residual Pl ☐ Histogram ✓ Normal probability plot	lots

e. Setelah klik OK, maka akan muncul *Output Scatterplot* Normalitas seperti yang terlihat pada Gambar 4.20 berikut.

Gambar 4.20 Grafik Normal Plot Ketersediaan jagung (Sumber: SPSS, 2017)

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

State Islamic University of Sultan Syarif Kasim Riau

Dilarang mengutip

Pengutipan

hanya untuk kepentingan pendidikan, penelitian, penulisan

sebagian atau seluruh karya tulis

ini tanpa mencantumkan dan menyebutkan sumber

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

State Islamic University of Sultan Syarif Kasim Riau

N

Berdasarkan Gambar 4.20, Ketersediaan jagung terdistribusi Normal, hal ini dapat dilihat dari tampilan grafik normal plot, titik-titik menyebar di sekitar dekat garis diagonal serta penyebarannya mengikuti arah garis diagonal yang artinya data terdistribusi simetris sempurna. Sehingga hal ini menunjukkan bahwa model persamaan layak dipakai karena telah memenuhi asumsi normalitas.

4.2.3 Uji Hipotesis

Berikut ini adalah tahap-tahap yang dilakukan dalam pengujian hipotesis.

4.2.3.1 Analisis Regresi Linier Berganda Ketersediaan jagung di Provinsi Riau

Setelah mengetahui variabel terikat dan variabel independennya serta memenuhi syarat uji asumsi klasik, maka selanjutnya adalah pengolahan data analisis regresi linier berganda.

Adapun faktor-faktor yang mempengaruhi ketersediaan jagung di Provinsi Riau yaitu Luas Panen, Harga Domestik, Jumlah Penduduk dan Jumlah Tenaga Kerja. Untuk menguji pengaruhnya, maka perlu dilakukan pengujian dengan metode regresi linier berganda. Berikut ini adalah langkah-langkah untuk membuat persamaan regresi linier berganda.

UIN SUSKA RIAU

Pengutipan

untuk

kepentingan pendidikan, per

ak Cipta Dilindungi Undang-Undang

Hak ci

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa

ulin Suska Riau.

kanya

penyusunan laporan,

pe

Pengutipan tidak merugikan kepentingan yang wajar

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:

Membuat Persamaan Regresi.

Untuk membuat persamaan regresi, terlebih dahulu membuat lembar kerja seperti yang tertera pada Tabel 4.13

No	X ₁	X ₂	X ₃	\mathbf{X}_4	Y	X1 ²	X_{2}^{2}	X_{3}^{2}	X_4^2
=1	16.524	1.980.873	4.513.973	4.399.699	44.277	273.042.576	3.923.857.842.129	20.375.952.244.729	19.357.351.290.601
-2	15.539	1.882.469	4.722.397	4.074.774	41.277	241.460.521	3.543.689.535.961	22.301.033.425.609	16.603.783.151.076
3	18.379	1.685.660	4.847.076	3.845.341	47.000	337.787.641	2.841.449.635.600	23.494.145.749.776	14.786.647.406.281
Z 4	21.397	1.663.100	4.890.399	3.834.093	54.381	457.831.609	2.765.901.610.000	23.916.002.379.201	14.700.269.132.649
25	25.016	1.691.500	5.123.360	4.255.602	62.219	625.800.256	2.861.172.250.000	26.248.817.689.600	18.110.148.382.404
<u>6</u>	18.044	1.833.000	5.542.761	4.468.816	50.399	325.585.936	3.359.889.000.000	30.722.199.503.121	19.970.316.441.856
007	14.139	2.117.000	5.738.543	3.987.998	41.892	199.911.321	4.481.689.000.000	32.930.875.762.849	15.904.128.048.004
-8	13.284	2.087.000	5.929.172	4.203.091	40.201	176.464.656	4.355.569.000.000	35.155.080.605.584	17.665.973.954.281
29	11.748	2.192.000	6.125.283	4.571.093	36.983	138.015.504	4.804.864.000.000	37.519.091.830.089	20.894.891.214.649
10	12.057	3.172.000	6.189.442	4.276.453	37.740	145.371.249	10.061.584.000.000	38.309.192.271.364	18.288.050.261.209
11	12.425	3.385.000	6.344.402	3.880.703	40.118	154.380.625	11.458.225.000.000	40.251.436.737.604	15.059.855.774.209
	178.552	23.689.602	59.966.808	45.797.663	496.487	3.075.651.894	54.457.890.873.690	331.223.828.19.526	191.341.415.057.219

Tabel 4.13 Lembar Kerja Analisis Regresi Linier Berganda

Sumber: Pengolahan Data (2017)

State Islamic Univer

No

1

2

3

4

5

6

7

8

9

10

11

Islamic Unive

 X_1X_2

32.731.945.452

29.251.685.791

30.980.745.140

35.585.350.700

42.314.564.000

33.074.652.000

29.932.263.000

27.723.708.000

25.751.616.000

38.244.804.000

42.058.625.000

367.649.959.083

Sumber: Pengolahan Data (2017)

Tabel 4.13 Lembar Kerja Analisis Regresi Linier Berganda (Lanjutan)

 X_1X_3

74.588.889.852

73.381.326.983

89.084.409.804

104.639.867.403

128.165.973.760

100.013.579.484

81.137.259.477

78.763.120.848

71.959.824.684

74.626.102.194

78.829.194.850

955.189.549.339

 X_1X_4

72.700.626.276

63.317.913.186

70.673.522.239

82.038.087.921

106.458.139.632

80.635.315.904

56.386.303.722

55.833.860.844

53.701.200.564

51.561.193.821

48.217.734.775

741.523.898.884

 $X_2 X_3$

8.941.607.238.429

8.889.765.958.193

8.170.522.130.160

8.133.222.576.900

8.666.163.440.000

10.159.880.913.000

12.148.495.531.000

12.374.181.964.000

13.426.620.336.000

19.632.910.024.000

21.475.800.770.000

132.019.170.881.682

 $X_2 X_4$

8.715.244.957.227

7.670.635.737.006

6.481.937.510.060

6.376.480.068.300

7.198.350.783.000

8.191.339.728.000

8.442.591.766.000

8.771.850.917.000

10.019.835.856.000

13.564.908.916.000

13.136.179.655.000

98.569.355.893.593

X₃ X₄

19.860.122.494.127

19.242.700.513.278

18.638.660.072.916

18.750.244.573.107

21.802.981.062.720

24.769.579.040.976

22.885.298.006.914

24.920.849.470.652

27.999.238.244.319

26.468.857.809.226

24.620.739.874.606

249.959.271.162.841

IV-24

з.		
	-	
Э.	9	- 94
1	_	-
1	0	
٤.,	0	
		10
<u>_</u>	(C)	6
۰.	C	C
5	<u>_</u>	- 53
t : :	0	10
	00	0.
<u>.</u>	-	-
£	-	
	0	- 77
	00	
		5
5	2	10
2	2	
	m	- C
20	4	
۰.	C .	12
1.	0	1
		-
5	86	2
	_	10
5	2	
1	ΩP.	
5	σ.	
5	D.	
	-	100
	二.	- Q
	3	
1.1	(Q)	-
2	00	1.52
	-	
	-	-
ς.,	21	. G
5	<u></u>	- 2
	2	
-	0	- 2
	2	- 9
÷ .	5	-
÷	<u></u>	
}	03	10
5	-	0
	-	
٤.	S	- 0
	-	
	1	
	10	0.
	22	
	10	-
	20	1
÷.,	2	
	50	10
5	77	- 74
	\simeq	
	00	
£	C .	- 6
2		-
		- 2
τ.		- 0.
5		100
		1
		- 54
		1
1		0
		-
		1
		10
		-
)		4
5		2
2		17
		12
5		5
		1
		-
		1
		- 51
		15
2		C
÷.,		1.00
2		1
5		-
5		-
)		0

σ.	0.0
Π.	70
0	0
2	2
9	<u> </u>
₩.	2
5	0
ω.	ũ.
⊃.	3
ct. 1	-
0.	00
0.0	3
8	5
2	00
<u>.</u>	C
5	2
	2
ш.	7
2	-
1	0
-	0
2	0
<u>P</u> .	2
8	÷.
Ξ.	õ
ē.	00
3	Э.
0	-
0	8
-	÷.
<	ā.
00	0
2	-
ч.	6
<	5
03	-
00	0
-	0
<u> </u>	2
	0
2	8
cn	00
č	2
(A) :	-
2	Χ.
ω.	÷.
70	C
00	
č.	×:
	-
	_
	8
	5
	5
	500
	-
	3
	00
	37
	-
	0
	9
	3
	2
	05
	C
	2
	100
	-
	0.5
	0
	0
	23
	1
	-
	0
	0
	-

- kanya silut

ġ

No	X_1Y	X_2Y	X ₃ Y	X_4Y
1	731.633.148	87.707.113.821	199.865.182.521	194.805.472.623
2	641.403.303	77.702.672.913	194.926.380.969	168.194.446.398
3	863.813.000	79.226.020.000	227.812.572.000	180.731.027.000
4	1.163.590.257	90.441.041.100	265.944.788.019	208.501.811.433
5	1.556.470.504	105.243.438.500	318.770.335.840	264.779.300.838
6	909.399.556	92.381.367.000	279.349.611.639	225.223.857.584
7	592.310.988	88.685.364.000	240.399.043.356	167.065.212.216
8	534.030.084	83.899.487.000	238.358.643.572	168.968.461.291
9	434.476.284	81.066.736.000	226.531.341.189	169.052.732.419
10	455.031.180	119.711.280.000	233.589.541.080	161.393.336.220
11	498.466.150	135.799.430.000	254.524.719.436	155.686.042.954
	8.380.624.454	1.041.863.950.334	2.680.072.159.621	2.064.401.700.976

Tabel 4 13 Lembar Keria Analisis Regresi Linier Berganda (Laniutan)

Sumber: Pengolahan Data (2017)

Berdasarkan dari Tabel 4.13, dapat diketahui:

Ν	= 11	$X_1.X_2 = 367.649.959.083$
X_1	= 178.552	$X_{1}.X_{3} = 955.189.549.339$
X_2	= 23.689.602	$X_1.X_4 = 741.523.898.884$
X ₃	= 59.966.808	$X_2 X_3 = 132.019.170.881.682$
X_4	= 45.797.663	$X_2.X_4 = 98.569.355.893.593$
Y	= 496.487	$X_3.X_4 = 249.959.271.162.841$
Y^2	= 23.014.363.659	$X_1.Y = 8.380.624.454$
X_1^2	= 3.075.651.894	$X_2.Y = 1.041.863.950.334$
X_2^2	= 54.457.890.873.690	$X_3.Y = 2.680.072.159.621$
X_{3}^{2}	= 331.223.828.199.526	$X_4.Y = 2.064.401.700.976$
\mathbf{X}_{4}^{2}	= 191.341.415.057.219	

Selanjutnya untuk mendapatkan koefisien regresi dapat dicari dengan langkah berikut ini.

Matriks

Su				Matriks					
N X ₁ X ₂ X ₃ X ₄	$\begin{array}{c} X_{1} \\ X_{1}^{2} \\ X_{1}.X_{2} \\ X_{1}.X_{3} \\ X_{1}.X_{4} \end{array}$	$\begin{array}{c} X_2 \\ X_1.X_2 \\ X_2^2 \\ X_2.X_3 \\ X_2.X_4 \end{array}$	$\begin{array}{c} X_{3} \\ X_{1}.X_{3} \\ X_{2}.X_{3} \\ X_{3}^{2} \\ X_{3}.X_{4} \end{array}$	$\begin{array}{c} X_4 \\ X_1.X_4 \\ X_2.X_4 \\ X_3.X_4 \\ X_4^2 \end{array}$	X	A B1 B2 B3 B4	=	$Y \\ X_1 Y \\ X_2 Y \\ X_3 Y \\ X_4 Y$	
iau									IV

Hak Cipta Dilindungi Undang-Undang 90

Pengutipan

fak Cipta Dilindungi Undang-Undang

ka

State Islamic Univer

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa iz

Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

hanya untuk kepentingan pendidikan, peneliti

an, penulisan

kanya

penyusunan laporan,

pe

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:

Matriks	[A]
---------	-----

11	178.552	23.689.602	59.966.808	45.797.663
178.552	3.075.651.894	367.649.959.083	955.189.549.339	741.523.898.884
23.689.602	367.649.959.083	54.457.890.873.690	132.019.170.881.682	98.569.355.893.593
59.966.808	955.189.549.339	132.019.170.881.682	331.223.828.199.526	249.959.271.162.841
45.797.663	741.523.898.884	98.569.355.893.593	249.959.271.162.841	191.341.415.057.219

• Hak cipta milik UI Det [A] = ((11 x 3.075.651.894 x 54.457.890.873.690 x 331.223.828.199.526 x 191.341.415.057.219) + ... + (45.797.663 x 178.552 x 367.649.959.083 x 132.019.170.881.682 x 249.959.271.162.841)) - ((45.797.663 x 955.189.549.339 x 54.457.890.873.690 x 955.189.549.339 x 45.797.663) + ... + (191.341.415.057.219 x 59.966.808 x 367.649.959.083 x 367.649.959.083 x 59.966.808))

4,68679 x 10⁵⁰ =

Matriks	$[A_1]$
---------	---------

496.487	178.552	23.689.602	59.966.808	45.797.663
8.380.624.454	3.075.651.894	367.649.959.083	955.189.549.339	741.523.898.884
1.041.863.950.334	367.649.959.083	54.457.890.873.690	132.019.170.881.682	98.569.355.893.593
2.680.072.159.621	955.189.549.339	132.019.170.881.682	331.223.828.199.526	249.959.271.162.841
2.064.401.700.976	741.523.898.884	98.569.355.893.593	249.959.271.162.841	191.341.415.057.219

Det [A1] = $-3,04497 \times 10^{54}$

IV-26

Т ak cipta milik UIN S 7

11

178.552

23.689.602

59.966.808

45.797.663

11

178.552

23.689.602

59.966.808

45.797.663

11

178.552

23.689.602

59.966.808

45.797.663

496.487

8.380.624.454

1.041.863.950.334

2.680.072.159.621

2.064.401.700.976

178.552

3.075.651.894

367.649.959.083

955.189.549.339

741.523.898.884

178.552

3.075.651.894

367.649.959.083

955.189.549.339

741.523.898.884

Matriks [A₂]

Det [A2] = $9,8657 \times 10^{50}$

Matriks [A₃]

Det $[A3] = 2,42514 \times 10^{47}$

Matriks [A₄]

Det $[A4] = 1,31164 \times 10^{48}$

2.064.401.700.976 249.959.271.162.841

59.966.808

955.189.549.339

132.019.170.881.682

331.223.828.199.526 249.959.271.162.841

59.966.808

955.189.549.339

132.019.170.881.682

331.223.828.199.526

496.487

8.380.624.454

1.041.863.950.334

2.680.072.159.621

2.064.401.700.976

45.797.663

741.523.898.884

98.569.355.893.593 249.959.271.162.841

191.341.415.057.219

45.797.663

741.523.898.884

98.569.355.893.593

249.959.271.162.841

191.341.415.057.219

45.797.663

741.523.898.884

98.569.355.893.593

249.959.271.162.841

191.341.415.057.219

IV-27

23.689.602

367.649.959.083

54.457.890.873.690

132.019.170.881.682

98.569.355.893.593

496.487

8.380.624.454

1.041.863.950.334

2.680.072.159.621

23.689.602

367.649.959.083

54.457.890.873.690

132.019.170.881.682

98.569.355.893.593

State Islamic Univer

lak Cipta Dilindungi Undang-Undang

- mengutip seba oian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber:

- kepenungan yang wajar **UIN Suska Riau**
- Pengutipan tidak merugikan
- Dilarang mengumumkan sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa

Hak cipta milik UIN Sus ka

Matriks [A₅]

Det [A5] = 2,92666 x 10^{47}

59.966.808

955.189.549.339

132.019.170.881.682

331.223.828.199.526

249.959.271.162.841

496.487

8.380.624.454

1.041.863.950.334

2.680.072.159.621

2.064.401.700.976

IV-28

23.689.602

367.649.959.083

54.457.890.873.690

132.019.170.881.682

98.569.355.893.593

178.552

3.075.651.894

367.649.959.083

955.189.549.339

45.797.663 741.523.898.884

11

178.552

23.689.602

59.966.808

State Islamic Univer

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber: Pengutipan untuk kepentingan pendidikan, penelitian, penulisan karya

- penyusunan laporan Pe

- Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa

Pengutipan

Dengan cara yang sama, maka didapatlah matriks *determinant* $[A_1]$, $[A_2]$, $[A_3]$, $[A_4]$ dan $[A_5]$ yang dapat dlihat pada Tabel 4.14 berikut ini.

Tabel 4.14 Rekap Data Matriks Determinant

Matriks Determinant	Nilai
Matriks Determinant [A]	$4,68679 \ge 10^{50}$
Matriks <i>Determinant</i> [A ₁]	-3,04497 x 10 ⁵⁴
Matriks <i>Determinant</i> [A ₂]	9,8657 x 10 ⁵⁰
Matriks <i>Determinant</i> [A ₃]	2,42514 x 10 ⁴⁷
Matriks <i>Determinant</i> [A ₄]	1,31164 x 10 ⁴⁸
$\subseteq Matriks Determinant [A_5]$	2,92666 x 10 ⁴⁷

Sumber: Pengolahan Data (2017)

0

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

hanya untuk kepentingan pendidikan, penelitian, penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

c University of Sultan Syarif Kasim Riau

Setelah semua matriks diperoleh maka selanjutnya menghitung nilai *intercept* (a)

dan koefisien regresi b_1 , b_2 , b_3 dan b_4 .

$$a = \frac{\text{Det } [A_1]}{\text{Det } [A]} = \frac{-3,04497 \text{ x } 10^{54}}{4,68679 \text{ x } 10^{50}} = -6496,921$$

$$b_1 = \frac{\text{Det} [A_2]}{\text{Det} [A]} = \frac{9,8657 \text{ x } 10^{50}}{4,68679 \text{ x } 10^{50}} = 2,105$$

$$b_2 = \frac{\text{Det} [A_3]}{\text{Det} [A]} = \frac{2,42514 \text{ x } 10^{47}}{4,68679 \text{ x } 10^{50}} = 0,0001 \quad 0,000$$

$$b_3 = \frac{\text{Det} [A_4]}{\text{Det} [A]} = \frac{1,31164 \text{ x } 10^{48}}{4,68679 \text{ x } 10^{50}} = 0,002$$

$$b_4 = \frac{\text{Det [A_5]}}{\text{Det [A]}} = \frac{2,92666 \text{ x } 10^{47}}{4,68679 \text{ x } 10^{50}} = 0,001$$

sehingga persamaan regresi linier berganda yang terbentuk adalah sebagai berikut.

$$\mathbf{Y} = -6496,921 + 2,105\mathbf{X}_1 + 0,000\mathbf{X}_2 + 0,002 \mathbf{X}_3 + 0,001\mathbf{X}_4 + \mathbf{e}$$

Dimana : Y = Ketersediaan jagung (Ton)

 X_1 = Luas Panen Jagung (Ha)

 X_2 = Harga Domestik Jagung (Rp/Ton/Tahun)

- $X_3 =$ Jumlah Penduduk (Jiwa)
- X₄ = Jumlah Tenaga Kerja Petani (Jiwa)

milik UIN

Suska

Ria

State Islamic University of Sultan Syarif Kasim Riau

Dilarang mengutip

N

Berikut ini adalah langkah-langkah untuk melihat hasil regresi *linear* berganda dengan SPSS.

Input data variabel Y, X₁, X₂, X₃ dan X₄ seperti yang terlihat pada Gambar
 4.21 di bawah ini.

<u>F</u> ile <u>E</u> dit ⊻ie	ew <u>D</u> ata <u>T</u> ran	isform <u>A</u> naly	ze <u>G</u> raphs	Utilities Add-or	ns <u>W</u> indow <u>I</u>	lelp
🗁 🖩 🗛 🚦	🗄 🦘 🖻 🥈		4 📲 📩 🛛	🗏 🥼 🔳 🦻	😽 🙆 🍋 🛷	
1:y	44277	.0				
	у	x1	х2	xЗ	x4	Var
1	44277.00	16524.00	1980873.00	4513973.00	4399699.00	
2	41277.00	15539.00	1882469.00	4722397.00	4074774.00	
3	47000.00	18379.00	1685660.00	4847076.00	3845341.00	
4	54381.00	21397.00	1663100.00	4890399.00	3834093.00	
5	62219.00	25016.00	1691500.00	5123360.00	4255602.00	
6	50399.00	18044.00	1833000.00	5542761.00	4468816.00	
7	41892.00	14139.00	2117000.00	5738543.00	3987998.00	
8	40201.00	13284.00	2087000.00	5929172.00	4203091.00	
9	36983.00	11748.00	2192000.00	6125283.00	4571093.00	
10	37740.00	12057.00	3172000.00	6189442.00	4276453.00	
11	40118.00	12425.00	3385000.00	6344402.00	3880703.00	
12						

Gambar 4.21 *Input* Variabel (Sumber: SPSS, 2017)

2. Kemudian klik menu Analysis, lalu klik submenu Regression dan pilih sub-

sub menu linear seperti Gambar 4.22.

Gambar 4.22 Pilih Sub-Menu *Linear* (Sumber: SPSS, 2017)

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Kemudian akan muncul kotak dialog *Linear Regression*, klik Variabel Y kemudian tekan anak panah warna biru untuk mengisi *Dependent*. Dan *Block* Variabel X_1 , X_2 , X_3 dan X_4 untuk mengisi bagian *Independent*. Untuk lebih jelas dapat dilihat pada Gambar 4.23 berikut ini.

A 1	Dependent:	Statistics.
✓ ×1	Block 1 of 1	Plots
		S <u>a</u> ve
₩ x4	Independent(s):	Options
	Method: Enter	
	WLS Weigtt:	

Gambar 4.23 Input Linear Regression (Sumber: SPSS, 2017)

4. Selanjutnya, klik tab *Statistics*, kemudian ceklis pada bagian *Estimates*, *Confidents Interval* dan *Covariance Matrix* kemudian *Continue* dan klik OK.

egression Coefficient	Model fit
Estimates	R squared change
Confidence intervals	Descriptives
Level(%): 95	Part and partial correlations
Covariance matrix	Collinearity diagnostics
esiduals —	
Durbin-Watson	
Casewise diagnostics	USKA
Outliers outside:	3 standard deviations
O All cases	

Gambar 4.24 *Linear Regression Statistics* (Sumber: SPSS, 2017)

Hak Cipta Dilindungi Undang-Undang

3.

Hak

milik UIN Suska

State Islamic University of Sultan Syarif Kasim Riau

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

9 Pengutipan Pengutipan tidak merugikan kepentingan yang wajar hanya untuk kepentingan pendidikan, penelitian, **UIN Suska Riau** penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Pengutipan

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

hanya untuk kepentingan pendidikan, penelitian,

N

5. Setelah klik OK, maka akan muncul Output Regression Linear seperti yang I terlihat pada Tabel 4.15 berikut.

Tabel 4.15 Hasil Regresi Linear Berganda

Coefficients ^a									
ta mi	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	95,0% Confidence Interval for B			
Model	В	Std. Error	Beta			Lower Bound	Upper Bound		
1 (Constant)	-6496,921	6385,443		-1,017	0,348	-22121,537	9127,695		
x1	2,105	0,098	1,140	21,517	0,000	1,866	2,344		
x2	0,000	0,001	0,027	0,431	0,682	-0,002	0,002		
x3	0,002	0,001	0,205	3,501	0,013	0,001	0,004		
x4	0,001	0,001	0,027	0,707	0,506	-0,002	0,004		

a. Dependent Variable: y

Sumber: SPSS (2017)

Dari tabel 4.15 di atas, diperoleh persamaan:

$Y = -6496,921 + 2,105X_1 - 0,000X_2 + 0,002X_3 + 0,001X_4$

= Ketersediaan jagung (Ton) Dimana : Y

- $X_1 =$ Luas Panen Jagung (Ha)
- X_2 = Harga Domestik Jagung (Rp/Ton/Tahun)
- $X_3 =$ Jumlah Penduduk (Jiwa)
- $X_4 =$ Jumlah Tenaga Kerja Petani (Jiwa)

4.2.3.2 Koefisien Determinasi (R²)

Untuk perhitungan koefisien determinasi, dapat dilakukan dengan langkah-langkah berikut ini.

No	\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	Y	Ypred	(Y-Ypred) ²	(Y-Ybar) ²
1	16.524	1.980.873	4.513.973	4.399.699	44.277	41713,744	6.570.281	736.476
2	15.539	1.882.469	4.722.397	4.074.774	41.277	39732,242	2.386.277	14.885.567
3	18.379	1.685.660	4.847.076	3.845.341	47.000	45730,367	1.611.968	3.477.547
4	21.397	1.663.100	4.890.399	3.834.093	54.381	52158,655	4.938.817	85.485.154
5	25.016	1.691.500	5.123.360	4.255.602	62.219	60664,081	2.417.773	291.856.844
6	18.044	1.833.000	5.542.761	4.468.816	50.399	47040,037	11.282.632	27.707.782
Cum	ham Dana	alahan Data	(2017)					

Tabel 4.16 Lembar Kerja untuk Menghitung Koefisien Determinasi

Sumber: Pengolahan Data (2017)

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Dilarang mengutip sebagian atau seluruh karya tulis

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

No	\mathbf{X}_1	\mathbf{X}_2	X ₃	X_4	Y	Ypred	(Y-Ypred) ²	(Y-Ybar) ²
7	14.139	2.117.000	5.738.543	3.987.998	41.892	38730,758	9.993.451	10.518.228
8	13.284	2.087.000	5.929.172	4.203.091	40.201	37527,334	7.148.490	24.346.150
9	11.748	2.192.000	6.125.283	4.571.093	36.983	35054,278	3.719.969	66.458.068
10	12.057	3.172.000	6.189.442	4.276.453	37.740	35538,401	4.847.038	54.688.714
11	12.425	3.385.000	6.344.402	3.880.703	40.118	36227,211	15.138.239	25.172.113
-			70.054.936	605.332.644				

Tabel 4.16 Lembar Kerja untuk Menghitung Koefisien Determinasi (Lanjutan)

Sumber: Pengolahan Data (2017)

Berdasarkan lembar kerja di atas, maka didapat koefisien determinasi sebagai berikut.

$$\mathbf{R}^{2} = 1 - \frac{(\text{Y-Ypred})^{2}}{(\text{Y-Ybar})^{2}} = 1 - \frac{70.054.936}{605.332.644} = 0,8842$$

Artinya: koefisien determinasi (R²) sebesar 0,8842 berarti 88,42% variabel terikat yaitu ketersediaan jagung dipengaruhi oleh variabel luas panen, harga domestik, jumlah penduduk dan jumlah tenaga kerja.

Sedangkan untuk koefisien determinasi dengan menggunakan SPSS, dapat dilakukan dengan langkah-langkah sebagai berikut.

Input data variabel Y, X1, X2, X3 dan X4 seperti yang terlihat pada Gambar 1. 4.25 di bawah ini.

Line Eart A	iew <u>D</u> ata <u>I</u> ra⊓	ISTORM Analy	rze <u>G</u> raphs	Quilles Add- <u>o</u> l		<u>T</u> eih
			4 🕴 💼	- I I I I	¥ 🌢 🗣 🤻	
1:y	44277	.0				
	у	x1	x2	xЗ	x4	var
1	44277.00	16524.00	1980873.00	4513973.00	4399699.00	
2	41277.00	15539.00	1882469.00	4722397.00	4074774.00	
3	47000.00	18379.00	1685660.00	4847076.00	3845341.00	
4	54381.00	21397.00	1663100.00	4890399.00	3834093.00	
5	62219.00	25016.00	1691500.00	5123360.00	4255602.00	
6	50399.00	18044.00	1833000.00	5542761.00	4468816.00	
7	41892.00	14139.00	2117000.00	5738543.00	3987998.00	
8	40201.00	13284.00	2087000.00	5929172.00	4203091.00	
9	36983.00	11748.00	2192000.00	6125283.00	4571093.00	
10	37740.00	12057.00	3172000.00	6189442.00	4276453.00	
11	40118.00	12425.00	3385000.00	6344402.00	3880703.00	
12						

Gambar 4.25 Input Variabel (Sumber: SPSS, 2017)

N Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

ini tanpa mencantumkan dan menyebutkan sumber

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

State Islamic University of Sultan Syarif Kasim Riau

2. Kemudian klik menu Analysis, lalu klik submenu Regression dan pilih sub-Hak sub menu *linear* seperti Gambar 4.26.

e II A 1			Reports	• B			
1 y	4427	1.1	D <u>e</u> stoiptive Sialis i S	•			
1	y 44277 01 41277.00	v1 1050 1650	Tagles RFM Analysis Co <u>m</u> tare Means Congrat Lince: Medal	 v2 409969 m 4077774.00 	var	Var	W8
2 4 E 7	4/000.01 54381.00 62219.00 57099.07	183, 2139 2501 100,	Generalizetti i Har Modal Generalizetti i Har Models Mixad Models Qomelace	2845341.00 2834093.00 4255602.00			
7 = 7 10 11 12 13 14 15 16 17 18 19 20	41892.00 4.201.00 07900.01 37740.00 4.118.00	1113 1328 1174 1208 1220	Begression Locinoor Neural Netyzinks Classity Diracho on Rocuction Single Moniparametric Lasts Gradologic Varbiel Varbiel	 M. Lucat Z. Durve Estimatio B. Partial Leads Sa B. Dinary Logistic. M. Bythomatical M. Bythomatical M. Bythomatical M. Bythomatical M. Salarita M. Mathematical 	n 		
21				_			

Kemudian akan muncul kotak dialog Linear Regression, klik Variabel Y 3. kemudian tekan anak panah warna biru untuk mengisi Dependent. Dan Block Variabel X1, X2, X3 dan X4 untuk mengisi bagian Independent. Untuk lebih jelas dapat dilihat pada Gambar 4.27 berikut ini. State Islamic University of Sultan Syarif Kasim Riau

(Sumber: SPSS, 2017)

<i>№</i> √1	Dependent:	Statistics
✓ x1 ✓ x2	Block 1 of 1	Plots
	Previous	Save
V ~T	Independent(s):	Options
	✓	
	Method: Enter	-
	Selection Variable:	<u> </u>
	Case Labels:	
	WLS Weight:	

Gambar 4.27 Input Linear Regression (Sumber: SPSS, 2017)

Hak Cipta Dilindungi Undang-Undang

cipta milik UIN Suska

- Dilarang mengutip sebagian atau seluruh kanya tulis ini tanpa mencantumkan dan menyebutkan sumber
- 9 Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- N

cipta milik UIN Suska

Dilarang mengutip

Pengutipan hanya untuk kepentingan pendidikan, penelitian,

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

4. Selanjutnya, klik tab *Statistics*, kemudian ceklis pada bagian *R Squares Changes* kemudian *Continue* dan klik OK.

Regression Coefficient	✓ Model fit
<mark>.</mark> ✓ <u>E</u> stimates	R squared change
Confidence intervals	
Level(%): 95	Part and partial correlations
Covariance matrix	Collinearity diagnostics
Residuals	
Durbin-Watson	
Casewise diagnostics	
Outliers outside:	3 standard deviations
O <u>A</u> ll cases	

Gambar 4.28 *Linear RegressionR Square* (Sumber: SPSS, 2017)

5. Setelah klik OK, maka akan muncul *Output R Square* seperti yang terlihat pada Tabel 4.17 berikut.

Tabel 4.17 Hasil R Square Changes

		Model Sum	nary		
Sta		Change	Statistics		
Model	R Square Change	F Change	df1	df2	Sig. F Change
1a	$0,992^{a}$	190,270	4	6	0,000

a. Predictors: (Constant), x4, x2, x1, x3

Sumber: SPSS (2017)

Syarif Kasim Riau

Berdasarkan Tabel 4.17, diperoleh nilai R^2 sebesar 0,992 yang berarti 99,2% variabel terikat yaitu Ketersediaan jagung dapat dijelaskan oleh variabelvariabel bebas yaitu Luas Panen, Harga Domestik, Jumlah Penduduk dan Jumlah Tenaga Kerja. Sedangkan sisanya sebesar 0,8% dijelaskan oleh variabel lain yang tidak dimasukkan ke dalam model.

Dilarang mengutip

Pengutipan

hanya untuk kepentingan pendidikan, penelitian,

sebagian atau seluruh kanya tulis

ini tanpa mencantumkan dan

menyebutkan sumber

penulisan

karya ilmiah,

penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

4.2.3.3 Uji T (Uji Parsial)

Berdasarkan hasil analisis regresi linier berganda pada Tabel 4.15, dapat dilihat pengaruh variabel-variabel bebas yaitu luas panen, harga domestik jagung, jumlah penduduk dan tenaga kerja terhadap ketersediaan jagung di Provinsi Riau. Berikut ini adalah penjelasan Uji T (Uji Parsial) dari masing-masing pengaruh variabel bebas terhadap variabel terikat.

- 1. Pengaruh Luas Panen Terhadap Ketersediaan jagung.
- Z Hipotesis:

ttabel, maka H₀ diterima atau H_a ditolak. Jika t_{hitung}

ka Jika t_{hitung} t_{tabel}, maka H₀ ditolak atau H_a diterima.

- Keterangan:
- : $\mu_a = \mu_0$ (tidak ada pengaruh signifikan antara luas panen terhadap H_0 ketersediaan jagung)
 - μ_0 (ada pengaruh signifikan antara luas panen terhadap Ha μ_a ketersediaan jagung)

Tabel 4.18 Uji T Variabel Luas Panen terhadap Ketersediaan jagung

t _{hitung}	t _{tabel}	Signifikansi	Keputusan	
21,517	2,447	0,682	ada pengaruh signifikan	
See han Danaalahan D	ata (2017)			Ì

Sumber: Pengolahan Data (2017)

Luas panen memiliki koefisien sebesar 2,105, yang artinya adalah terdapat S pengaruh positif antara luas panen dengan ketersediaan jagung. Jika luas panen naik sebesar 1 Ha, maka ketersediaan jagung akan bertambah Islamic sebanyak 2,105 Ton. Nilai thitung variabel luas panen yang diperoleh adalah sebesar 21,517 dan nilai t_{tabel} adalah sebesar 2,447 maka $t_{hitung} > t_{tabel}$. Tingkat University of Sultan Syarif Kasim Riau signifikansi sebesar 0,000 maka signifikansi (0,000 < 0,05, sehingga dapat disimpulkan bahwa H₀ ditolak dan H_a diterima, yang artinya variabel luas panen secara Uji T (parsial) berpengaruh nyata terhadap ketersediaan jagung di Provinsi Riau.

Dilarang mengutip

Pengutipan Pengutipan tidak

hanya untuk kepentingan pendidikan, penelitian,

merugikan kepentingan yang wajar

UIN Suska Riau

sebagian atau seluruh karya tulis

ini tanpa mencantumkan dan

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

N

Pengaruh Harga Domestik Jagung Terhadap Ketersediaan jagung. 2.

- Hak Hipotesis:
 - t_{tabel}, maka H₀ diterima atau H_a ditolak. Jika t_{hitung}
 - t_{tabel}, maka H₀ ditolak atau H_a diterima. Jika t_{hitung}
 - Keterangan:
- milik : $\mu_a = \mu_0$ (tidak ada pengaruh signifikan antara harga domestik jagung H_0 UIN terhadap ketersediaan jagung)
 - μ_0 (ada pengaruh signifikan antara harga domestik jagung Ha : μ_a terhadap ketersediaan jagung)

Tabel 4.19 Uji T Variabel Harga Domestik terhadap Ketersediaan jagung

thitung	t _{tabel}	Signifikansi	Keputusan
0,431	2,447	0,682	Tidak ada pengaruh signifikan
umber: Pengolaha	n Data (2017)		

Sumber: Pengolahan Data (2017)

Harga domestik jagung memiliki koefisien sebesar 0,000, yang artinya adalah tidak terdapat pengaruh positif atau negatif antara harga domestik jagung dengan ketersediaan jagung. Nilai thitung variabel harga domestik yang diperoleh adalah sebesar 0,431 dan nilai t_{tabel} adalah sebesar 2,447 maka t_{hitung} $< t_{tabel}$. Tingkat signifikansi sebesar 0,682 maka signifikansi (0,682 > 0,05, sehingga dapat disimpulkan bahwa H₀ diterima dan H_a ditolak, yang artinya variabel harga domestik jagung secara Uji T (parsial) tidak berpengaruh nyata terhadap ketersediaan jagung di Provinsi Riau.

3. Pengaruh Jumlah Penduduk Terhadap Ketersediaan jagung.

Hipotesis:

State

University of

Sultan Syarif Kasim Riau

ttabel, maka H0 diterima atau Ha ditolak. Jika t_{hitung}

Jika t_{hitung} t_{tabel}, maka H₀ ditolak atau H_a diterima.

- Keterangan:
- : $\mu_a = \mu_0$ (tidak ada pengaruh signifikan antara jumlah penduduk H_0 terhadap ketersediaan jagung)
- μ_a μ_0 (ada pengaruh signifikan antara jumlah penduduk terhadap Ha : ketersediaan bahan pangan jagung)

Dilarang mengutip Pengutipan

sebagian atau seluruh karya tulis

ini tanpa mencantumkan dan menyebutkan sumber

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Kasim Riau

hanya untuk

kepentingan pendidikan,

N

Tabel 4.20 Uji T Variabel Jumlah Penduduk terhadap Ketersediaan jagung

	5		1	300
T	t _{hitung}	t _{tabel}	Signifikansi	Keputusan
0	3,501	2,447	0,013	ada pengaruh signifikan
Contral		(2017)		

Sumber: Pengolahan Data (2017)

Jumlah penduduk memiliki koefisien sebesar 0,002, yang artinya adalah terdapat pengaruh positif antara jumlah penduduk dengan ketersediaan jagung. milik Jika jumlah penduduk naik sebesar 1000 jiwa, maka ketersediaan jagung akan bertambah sebanyak 2 Ton. Nilai thitung variabel jumlah penduduk yang UIN diperoleh adalah sebesar 3,501 dan nilai t_{tabel} adalah sebesar 2,447 maka t_{hitung} > t_{tabel}. Tingkat signifikansi sebesar 0,013 maka signifikansi (0,013 < 0,05, uska sehingga dapat disimpulkan bahwa H₀ ditolak dan H_a diterima, yang artinya variabel jumlah penduduk secara Uji T (parsial) berpengaruh nyata terhadap ketersediaan jagung di Provinsi Riau.

Pengaruh Jumlah Tenaga Kerja Terhadap Ketersediaan jagung . 4.

Hipotesis:

t_{tabel}, maka H₀ diterima atau H_a ditolak. Jika t_{hitung}

Jika t_{hitung} ttabel, maka H0 ditolak atau Ha diterima.

Keterangan:

- μ_0 (tidak ada pengaruh signifikan dari jumlah tenaga kerja H_0 : μ_a terhadap ketersediaan jagung)
- State μ_0 (ada pengaruh signifikan dari jumlah tenaga kerja terhadap Ha μ_a ketersediaan jagung)

Tabel 4.21 Uji T Variabel Jumlah Tenaga Kerja terhadap Ketersediaan jagung

e t _{hitung}	t _{tabel}	Signifikansi	Keputusan			
0,707	2,447	0,506	Tidak ada pengaruh signifikan			
Sumber: Pengolahan Data (2017)						

ersity of Sultan Syarif Jumlah tenaga kerja memiliki koefisien sebesar 0,001, yang artinya adalah terdapat pengaruh positif antara jumlah penduduk dengan ketersediaan jagung. Jika jumlah penduduk naik sebesar 1000 jiwa, maka ketersediaan jagung akan bertambah sebanyak 1 Ton. Nilai thitung variabel jumlah penduduk yang diperoleh adalah sebesar 0,707 dan nilai t_{tabel} adalah sebesar 2,447 maka t_{hitung} < t_{tabel}. Tingkat signifikansi sebesar 0,506 maka signifikansi (0,506 > 0,05,

Dilarang mengutip

Pengutipan

hanya untuk

kepentingan pendidikan, penelitian,

N

sehingga dapat disimpulkan bahwa H_0 diterima dan H_a ditolak, yang artinya variabel jumlah tenaga kerja secara Uji T (parsial) tidak berpengaruh nyata terhadap ketersediaan jagung di Provinsi Riau.

4.2.3.4 Uji F (Uji Serentak)

Selanjutnya adalah Uji F, yaitu untuk menguji apakah luas panen, harga domestik, jumlah penduduk dan jumlah tenaga kerja yang digunakan dalam model mampu menjelaskan perubahan ketersediaan jagung atau tidak. Untuk menyimpulkan hal tersebut maka dilakukan perhitungan sebagai berikut dengan hipotesis:

Jika F_{hitung} F_{tabel} , maka H_0 diterima atau H_a ditolak.

Jika F_{hitung} F_{tabel} , maka H_0 ditolak atau H_a diterima.

Keterangan:

- H_0 : $\mu_a = \mu_0$ (tidak ada pengaruh signifikan secara serentak antara luas panen, harga domestik, jumlah penduduk dan jumlah tenaga kerja terhadap ketersediaan jagung)
- H_a : μ_a μ_0 (ada pengaruh signifikan secara serentak antara luas panen, harga domestik, jumlah penduduk dan jumlah tenaga kerja terhadap ketersediaan jagung)
- 1S

Kasim Riau

Dengan menggunakan hasil koefisien determinasi sebelumnya, maka diperoleh nilai F_{hitung}:

$$F = \frac{\frac{R^2}{(k-1)}}{\frac{1-R^2}{(n-k)}} = \frac{\frac{0,884}{(4-1)}}{\frac{1-0,884}{(11-4)}} = 17,82$$

Dengan df: , (k-1), (n-k) atau 0,05, (4-1), (11-4) diperoleh besarnya F_{tabel} sebesar 6,16. Karena nilai F_{hitung} (17,82) > nilai F_{tabel} (6,16), maka dapat disimpulkan bahwa ada pengaruh signifikan secara serentak antara luas panen, harga domestik, jumlah penduduk dan jumlah tenaga kerja terhadap ketersediaan jagung .

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Berdasarkan hasil analisis regresi linier berganda SPSS pada Tabel 4.17 pada koefisien determinasi, diperoleh:

Tabel 4.22 Uji F Masing-masing Variabel terhadap Ketersediaan jagung

0	F _{hitung}	F _{tabel}	Keputusan			
oti	190,27	6,16	ada pengaruh signifikan			
Sumbo	Sumher: Dangelehen Data (2017)					

Sumber: Pengolahan Data (2017)

Nilai F_{hitung} sebesar 190,27 dengan tingkat signifikansi sebesar 0,000 sedangkan nilai F_{tabel} sebesar 6,16 pada tingkat signifikansi sebesar 0,05%. Oleh karena itu, $F_{hitung} > F_{tabel}$ yaitu 190,27 > 6,16, maka H₀ ditolak dan H_a diterima yang artinya ada pengaruh nyata antara luas panen, harga domestik jagung, jumlah penduduk dan tenaga kerja terhadap ketersediaan jagung di Provinsi Riau.

Fault Tree Analysis (FTA) 4.2.4

Setelah pengolahan data analisis regresi linier berganda, selanjutnya adalah menganalisa faktor-faktor dari akar permasalahan atau point dasar dari variabel-variabel yang mempengaruhi ketersediaan jagung. Berikut ini akan diuraikan analisa FTA dari 2 variabel yang mempengaruhi ketersediaan jagung.

4.2.4.1 FTA Variabel Luas Panen terhadap Ketersediaan jagung

Luas panen merupakan variabel yang sangat mempengaruhi ketersediaan jagung. Semakin besar luas panen, maka semakin besar juga produksi jagung yang dihasilkan sehingga ketersediaan jagung pun bertambah. Dapat dilihat dari Gambar 4.29 berikut ini.

amic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

- Pengutipan Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Gambar 4.29 Luas Panen Mempengaruhi Ketersediaan jagung (Sumber: Pengolahan Data, 2017)

Berdasarkan Gambar 4.29 di atas, dapat dilihat bahwa apabila luas panen menurun, maka ketersediaan jagung juga ikut menurun. Hal ini dikarenakan kurangnya luas tanam dan adanya penanaman jagung yang kurang baik. Kurangnya luas tanam dikarenakan adanya penggunaan lahan yang tidak maksimal. Saat ini, lahan pertanian jagung yang menjadi sasaran luas tanam jagung di Provinsi Riau adalah ± 18.005 Ha, sedangkan realisasi luas tanam jagung yang digunakan hanya \pm 13.368 Ha dan masih ada sisa \pm 4.637 Ha lagi

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Riau

ŝ

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

lahan pertanian jagung yang tidak digunakan. Penggunaan lahan yang tidak maksimal ini dikarenakan adanya keterbatasan jumlah benih jagung, baik benih jagung Hibrida maupun benih jagung Hawai. Benih jagung hibrida merupakan benih jagung subsidi dari pemerintah sedangkan benih jagung hawai merupakan benih jagung yang dibeli sendiri oleh petani. Oleh karena itu, apabila benih-benih jagung ini memadai, maka luas lahan yang digunakan akan maksimal, yang menyebabkan bertambahnya luas tanam dan apabila luas tanam bertambah maka luas panen jagung pun akan meningkat dan jumlah produksi jagung bertambah sehingga akan membuat ketersediaan jagung untuk wilayah Provinsi Riau meningkat.

Selain disebabkan oleh luas tanam, penanaman jagung yang kurang baik juga dapat menurunkan hasil luas panen jagung. Penanaman jagung yang kurang baik ini disebabkan adanya penggunaan pupuk yang kurang tepat, pemberian fungisida yag kurang tepat dan perawatan jagung yang kurang baik. Saat ini, petani Provinsi Riau masih menggunakan pupuk urea, TSP dan KCL sekaligus, sehingga terlalu banyak zat-zat kimia yang digunakan yang membuat jagung tidak tumbuh dengan baik. Sedangkan sekarang ini, sudah ada pupuk MPK yang telah mencakup kandungan dari urea, TSP dan KCL tersebut, sehingga lebih efisien digunakan. Perawatan yang baik oleh petani juga berperan penting dalam meningkatkan luas panen jagung, sehingga benih-benih jagung yang ditanami bisa tumbuh dengan baik dan dapat dipanen seluas jumlah tanam yang digunakan sehingga dapat meningkatkan luas panen yang akan mengakibatkan ketersediaan jagung untuk wilayah Provinsi Riau meningkat.

4.2.4.2 FTA Variabel Jumlah Penduduk terhadap Ketersediaan Jagung

Jumlah penduduk merupakan salah satu variabel yang mempengaruhi ketersediaan jagung. Semakin banyak penduduk Provinsi Riau maka semakin bertambah kebutuhan pangan jagung. Hal ini dapat dilihat padat Gambar 4.30 berikut.

ini tanpa mencantumkan dan menyebutkan sumber

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber
- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

State Islamic Un 1 Kasim Riau

Gambar 4.30 Pengaruh Jumlah Penduduk terhadap Ketersediaan Jagung (Sumber: Pengolahan Data, 2017)

Berdasarkan Gambar 4.30 di atas, dapat dilihat bahwa kebutuhan jagung tidak terpenuhi dikarenakan kurangnya jumlah produksi jagung. Produksi jagung kurang disebabkan adanya keterbatasan benih jagung dan adanya benih jagung subsidi yang tidak terdistribusi dengan baik. Benih jagung subsidi yang tidak terdistribusi dengan baik dikarenakan adanya kinerja pegawai yang kurang baik. Sehingga, jika benih jagung ini cukup dan benih jagung subsidi yang diberikan oleh pemerintah terdistribusi dengan baik ke petani, maka jumlah produksi jagung

Dilarang mengutip sebagian atau seluruh karya tulis

ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

N

yang dihasilkan meningkat dan membuat kebutuhan jagung untuk penduduk Provinsi Riau dapat terpenuhi.

4.2.4.3 Usulan Kebijakan

Berdasarkan uraian dari analisa FTA variabel luas panen dan jumlah penduduk terhadap ketersediaan jagung maka didapatlah usulan kebijakan yang dapat diberikan guna untuk meningkatkan ketersediaan jagung untuk Badan Ketahanan Pangan Provinsi Riau adalah sebagai berikut.

Kebijakan pemberian subsidi benih jagung hibrida dan hawai kepada petani jagung.

2. Kebijakan evaluasi kinerja pegawai dalam pendistribusian benih jagung bersubsidi.

Untuk mensukseskan kebijakan tersebut, dapat dilakukan dengan cara mengadakan penyuluhan-penyuluhan kepada petani-petani tentang pemberian subsidi benih jagung di tiap-tiap desa yang ada di Provinsi Riau.

UIN SUSKA RIAU

State Islamic University of Sultan Syarif Kasim Riau

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah