BAB IV

ANALISA DAN PERANCANGAN

4.1 Analisa

Analisa merupakan tahapan yang sangat penting dalam melakukan penelitian. Proses analisa ini dilakukan untuk mendapatkan informasi dari data yang ada, sehingga dapat ditentukan apa saja yang diperlukan dalam melakukan penelitian nantinya. Secara umum analisa dibagi atas dua hal analisa tentang kebutuhan data dan dan analisa proses klasifikasi daun tanaman obat menggunakan metode Pricipal Component Analisys (PCA) untuk mendapatkan hasil ekstraksi ciri dari citra dan kemudian dilakukan klasifikasi menggunakan metode Learning Vector Quantization 3 (LVQ3).

4.1.1 Analisa Kebutuhan Data

Analisa kebutuhan data merupakan proses untuk menganalisa semua data yang dibutuhkan dalan pengerjaan aplikasi yang akan dibangun. Proses analisa ini dimulai dari proses pengambilan data sampai mengklasifikasikan data. Data citra yang digunakan dalam penelitian ini sebagai data citra latih dan citra uji yang dikumpulkan oleh peneliti sendiri atau sering disebut data primer. Data citra diambil dari daun daun yang dipetik dan difoto langsung dari tumbuhan disekitar pekarangan rumah peneliti dengan menggunakan kamera smartphone dan data citra daun diambil foto pada bagian depan dan bagian belakang daun.

Kebutuhan data dalam penelitian ini adalah data gambar daun tanaman obat dengan kriteria sebagai berikut :

1. Data citra daun tanaman obat yang diambil dari citra daun obat secara utuh, dengan proses pemotongan gambar (*Cropping*), resize dan menghilangkan background pada gambar secara manual menggunakan photoshop.

Hak Cipta Dilindungi Undang-Undang

Hak cipta milik

Dilarang mengutip

N

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Syarif

Kasim Riau

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

- Dilarang mengutip
- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan **UIN Suska Riau** karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Pengutipan tidak merugikan kepentingan yang wajar
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau
- sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Ha

7

- Data citra diperoleh dari hasil pengambilan gambar secara langsung 2. menggunakan kamera smartphone 8 megapixel
- 3. Citra daun berekstensi PNG, diubah dengan bantuan photoshop agar nilai milik background tidak terhitung.
- 4. Dimensi citra adalah 200x 200 pixel. Dimensi citra yang kecil bertujuan UIN untuk mempercepat perhitungan dalam pemprosesan data pada tahap implementasi.

Tahapan selanjutnya adalah pengelompokan data latih dan data uji yang K akan digunakan untuk penelitian ini.

4.1.2 Analisa Metode

Pada penelitian ini, tahapan analisa metode mrerupakan proses citra dimulai dari tahapan preprocessing, berlanjut ke tahapan ektraksi ciri menggunakan metode Principal Component Analysis, dan hasil dari ekstraksi ciri akan digunakan sebagai inputan pada proses klasifikasi menggunakan metode Learning Vector Quantization (LVQ3). Berikut ini merupakan ketiga tahapannya

a. Pengolahan Awal (Pre-Processing)

Pengolahan awal (pre-processing) merupakantahapan awal yang dilakukan untuk melakukan perbaikan citra. Tujuan dari proses ini yaitu untuk mendapatkan hasil yang lebih baik. Preprocessing yang dilakukan dalam penelitian ini yaitu menghilangkan *background* (*selection*) citra setelah melakukan *cropping* dan resize pada daun tanaman obat. Proses awal (preprocessing) pada penelitiam ini menggunakan bantuan photoshop. Citra hasil preprocessing ini akan dijadikan input untuk proses ekstraksi ciri menggunakan PCA.

Qf. 1. Tahapan *Cropping* Sultan Syarif Kasim Riau

Tahapan cropping ini bertujuan untuk mendapatkan objek daun tanaman obat. Proses *cropping* dilakukan yaitu tahap penghilangan sisi pada objek daun tanaman obat yaitu diambil dari sisi sudut daun bagian atas, bagian bawah, bagian kanan, dan bagian kiri. Berikut gambar daun sebelum dilakukan cropping dengan ukuran gambar 3264 x 2448 pixel.

Hak cipta milik UIN Suska

State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber
- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- N Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Gambar 4.1 Citra sebelum Cropping

Setelah dilakukan cropping yaitu menghilangkan sisi atau bagian yang tidak diperlukan sehingga mendapatkan objek dari daun. Pada gambar dibawah dapat dilihat hasil citra setelah di cropping.

Gambar 4.2 Citra Setelah cropping

2. Tahapan Resize

Setelah dilakukan cropping kemudian dilakukan resize dengan menggunakan matrik dimensi 200 x 200 pixel.

Gambar 4.3 Citra Setelah ProsesResize 3. Tahapan menghilangkan backround (selection)

Setelah tahapan resize kemudian dilakukan penghilangan background (selection) pada citra. Hal ini dilakukan agar nilai background tidak mempengaruhi nilai citra daun tanaman obat. Berikut gambar untuk citra tanpa background.

Hak cipta

milik

- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Gambar 4.4 Citra Setelah Selection

b. Ekstraksi Ciri Dengan Principal Component Analysis

Setelah proses preprocessing dilakukan yaitu menghilangkan background, cropping dan melakukan penyamaan ukuran (resize), maka selanjutnya dilakukan proses ekstrakasi dengan menggunakan Principal Component Analysis dengan tujuan untuk mendapatkan ciri citra daun tanaman obat yang nantinya akan digunakan untuk proses pengelompokan. Proses ekstraksi ciri PCA ini terbagi atas dua yaitu tahapan ekstraksi citra data latih dan tahapan ekstraksi ciri data uji.

Tahapan Ekstraksi Ciri Data Latih

1. Membuat Matriks data set daun

Pada penelitian ini menggunakan nilai red, green, dan blue. Sehingga dilakukan pemisahan terhadap nilai matrik $red_{(m,n)}$, $green_{(m,n)}$ dan $blue_{(m,n)}$. Langkah awal PCA adalah membuat suatu himpunan S yang terdiri dari seluruh data pelatihan berdasarkan rumus (2.1). Dapat dilihat pada tabel 4.1 untuk matrik red, 4.2 untuk matrik green dan Tabel 4.3 untuk matrik blue berikut :

(m,n)	1	 20501	20502	20503	20504	20505	 40000
ers 1	0	 45	45	46	47	47	 0
ity		 •••					
9 71	0	 79	75	76	79	79	 0
o72	0	 32	27	30	32	30	 0
73	0	 42	40	39	40	41	 0
74	0	 42	44	36	37	38	 0
975	0	 51	52	53	51	49	 0
ar		 •••	•••	•••	•••	•••	
144		 28	30	28	25	27	 0

Tabel 4.1 Matrik Red

144 x 40000.

(m,n)

Tabel 4.2 Matrik Green

1

20501

20502

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

N Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

1 0 63 64 65 65 0 63 ••• ••• 2 71 99 0 102 101 105 105 ... 0 • • • 0 72 0 38 34 37 39 37 ... ••• 73 0 64 63 63 64 65 0 ••• ... 74 0 0 ... 66 69 63 63 64 ... 79 79 75 0 78 80 77 0 ... ••• 144 0 40 40 39 36 0 38 Pada Tabel 4.2 merupakan hasil matrik green yang dijadikan dalam satu

himpunan data set. Penelitian ini menggunakakan citra berdimensi 200 x 200 pixel, sehingga satu citra yang awalnya berdimensi 200 x 200 dijadikan matriks satu dimensi menjadi matriks 1 x 40000. Dan 144 merupakan jumlah keseluruhan citra latih yang akan dilakukan ekstraksi ciri. Sehingga hasil matriks himpunan berdimensi 144 x 40000.

Pada Tabel 4.1 merupakan hasil matrik *red* yang dijadikan dalam satu himpunan

data set. Penelitian ini menggunakakan citra berdimensi 200 x 200 pixel, sehingga

satu citra yang awalnya berdimensi 200 x 200 dijadikan matriks satu dimensi

menjadi matriks 1 x 40000. Dan 144 merupakan jumlah keseluruhan citra latih

yang akan dilakukan ekstraksi ciri. Sehingga hasil matriks himpunan berdimensi

20504

20505

. . .

40000

20503

Tabel 4.3 Matrik Blue

(m,n)	1	 20501	20502	20503	20504	20505	 40000
y 1	0	 51	51	51	53	52	 0
The second		 					
E 71	0	 46	39	38	43	43	 0
72	0	 31	27	30	32	30	 0
073	0	 40	39	38	40	41	 0
74	0	 42	45	38	38	39	 0
75	0	 36	35	32	30	27	 0
Ka		 •••	•••	•••	•••	•••	
144	0	 29	35	33	33	38	 0

IV-5

Hak ca

Hak Cipta Dilindungi Undang-Undang

Pada Tabel 4.3 merupakan hasil matrik *blue* yang dijadikan dalam satu himpunan data set. Penelitian ini menggunakakan citra berdimensi 200 x 200 pixel, sehingga satu citra yang awalnya berdimensi 200 x 200 dijadikan matriks satu dimensi menjadi matriks 1 x 40000. Dan 144 merupakan jumlah keseluruhan citra latih yang akan dilakukan ekstraksi ciri. Sehingga hasil matriks himpunan berdimensi 144 x 40000.

2. Menghitung nilai rata-rata (mean) citra

Setelah citra RGB dijadikan menjadi matrik 1x (baris x kolom) selanjutnya menghitung nilai rata-rata kolom dari matriks RGB menggunakan persamaan (2.2). Berikut ini contoh perhitungan pada kolom 20501 Tabel 4.1 untuk nilai Red. Sehingga menghasilkan nilai *mean* seperti pada tabel 4.4, 4.5, 4.6 dibawah ini :

 $\Psi = \frac{45 + \dots + 79 + 32 + 42 + 42 + 51 + \dots + 28}{144}$ $\Psi = \frac{6393}{144} = 44,396$

Tabel 4.4 Nilai Rata-Rata(**Y**) Kolom Matrik *Red*

(m,n)	1	 20501	20502	20503	20504	20505	 40000
1	0	 44,396	44,361	44,049	43,438	43,201	 0

Pada Tabel 4.4 merupakan hasil mencari nilai *mean* pada tumpukan warna *red* dalam matriks 1 x 40000. Nilai mean pada pixel matrik *red* (1, 20501) bernilai 44,396.

S

asim Riau

Tabel 4.5 Nilai Rata-Rata(Ψ)	Kolom Matrik Green
-------------------------------------	--------------------

(m,n)	1	 20501	20502	20503	20504	20505	 40000
1	0	 68,326	68,257	68,042	67,382	67,313	 0

Pengutipan Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

N Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Pengutipan

Hak Cipta Dilindungi Undang-Undang

N

Pada Tabel 4.5 merupakan hasil mencari nilai *mean* pada tumpukan warna *Green* dalam matriks 1 x 40000. Nilai mean pada pixel matrik *Green*(1, 20501) bernilai 68,326.

Tabel 4.6 Nilai Rata-Rata (Ψ) Kolom Matrik *Blue*

		-						
(m,n)	1		20501	20502	20503	20504	20505	 40000
1	0		36,514	36,493	36,257	35,542	35,278	 0

Pada Tabel 4.6 merupakan hasil mencari nilai *mean* pada tumpukan warna *Blue* dalam matriks 1 x 40000. Nilai mean pada pixel matrik *Blue*(1, 20501) bernilai 36,514.

3. Menghitung Matriks Normalisasi (Φ)

Mengitung matriks normalisasi (Φ) dengan menggunakan persamaan (2.3). dimana nilai citra latih pada kolom 20501 baris pertama merujuk pada Tabel 4.1 adalah Γ = 45, dan nilai Ψ pada kolom 20501 merujuk pada Tabel 4.4 adalah Ψ = 44,396, contoh perhitungan mencari nilai normalisasinya sebagai berikut :

 $\Phi = 45 - 44,396 = 0,6042$

Maka nilai normalisasinya adalah 0,6042 seperti dapat dilihat pada Tabel 4.7 baris pertama kolom 20501 untuk tumpukan matrik *Red.* Pada tahapan normalisasi ini yang diambil nilai pixel yang bernilai positif, apabilai nilai pixel negatif maka akan di nol kan.

Tabel 4.7 Nilai Normalisasi (Φ)Citra Matrik *Red* Data Latih

(m,n)	1	 20501	20502	20503	20504	20505	 40000
ISI 1	0	 0,6042	0,6389	1,95139	3,5625	3,799	 0
Y		 			•••		
71	0	 34,604	30,639	31,9514	35,5625	35,8	 0
= 72	0	 0	0	0	0	0	 0
73	0	 0	0	0	0	0	 0
574	0	 0	0	0	0	0	 0
75	0	 6,6042	7,6389	8,95139	7,5625	5,799	 0
rif		 		•••			
140	0	 0	0	0	0	0	 0
00							

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

hanya untuk kepentingan pendidikan, penelitian, penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Dilarang mengutip

Pengutipan

hanya untuk kepentingan pendidikan, penelitian,

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Riau

Pada Tabel 4.7 berisi nilai normalisasi untuk matrik *Red* yang merupakan hasil dari nilai selisih tiap piksel matrik *Red* pada citra data latih. Nilai ini yang nantinya akan digunakan untuk mencari nilai matrik kovarian.

(m,n)	1	 20501	20502	20503	20504	20505	 40000
\subseteq_1	0	 0	0	0	0	0	
Ζ		 					
_71	0	 33,674	30,743	32,9583	37,6181	37,69	 0
-72	0	 0	0	0	0	0	 0
∞73	0	 0	0	0	0	0	 0
-74	0	 0	0,7431	0	0	0	 0
e 75	0	 9,6736	10,743	11,9583	11,6181	9,688	 0
144	0	 0	0	0	0	0	 0

Tabel 4.8 Nilai Normalisasi(Φ) Citra Matrik *Green* Data Latih

Pada Tabel 4.8 berisi nilai normalisasi untuk matrik *Green* yang merupakan hasil dari nilai selisih tiap piksel matrik *Green* pada citra data latih. Nilai ini yang nantinya akan digunakan untuk mencari nilai matrik kovarian

(m,n)	1		20501	20502	20503	20504	20505		40000
1	0		14,486	14,507	15,7431	17,4583	17,72		0
Sta				•••					
71	0		9,4861	2,5069	1,74306	7,45833	7,722		0
72	0		0	0	0	0	0		0
73	0		3,4861	2,5069	1,74306	4,45833	5,722		0
_74	0		5,4861	8,5069	1,74306	2,45833	3,722		0
_75	0		0	0	0	0	0		0
Jn							••••		•••
144	0		0	0	0	0	0		0

Tabel 4.9 Nilai Normalisasi (Φ) Citra Matrik *Blue* Data Latih

Pada Tabel 4.9 berisi nilai normalisasi untuk matrik *Blue* yang merupakan hasil dari nilai selisih tiap piksel matrik *Blue* pada citra data latih. Nilai ini yang nantinya akan digunakan untuk mencari nilai matrik kovarian.

4. Menghitung Matrik Kovarian

Langkah selanjutnya yaitu proses mencari nilai dari matriks kovarian citra dengan persamaan (2.4). pada persamaan tersebut dijelaskan bahwa matriks kovarian dapat dihitung dengan mengalikan nilai matriks normalisasi dengan

matriks normalisasi yang ditranspose. Berikut perhitungan matriks kovarian dengan menggunakan persamaan (2.4):

	0								
	/1		0,60	42	0,6389	1,9	5139	 0	
)	
	0		34,6	04	30,639	31	,9514	 0	
=	0		0		0		0	 0	X
	-							 	
	0	0	0		0		0	 0 /	
	\sim		Ma	atrik	α Φ144 χ	400	00	/	
	0								
	7	1			0		0	 0	
	K)	
		0,604	42		34,60)4	0	 0	1
	E),638	89		30,63	39	0	 0	
	E 1	,951	39		31,95	14	0	 0	
	/	0			0		0	 0/	

Matrik $\Phi_{40000x144}$

Baris1 Kolom1

 $\mathbf{C} = [(1\mathbf{x}1) + \ldots + (0,6042 \times 0,6042) + (0,6389 \times 0,6389) + (1,95139 \times 1,95139)]$ $+ ... + (0 \times 0)]$

tate 3152870,787

Berdasarkan perhitungan tersebut menghasilkan sebuah matrik kovarian untuk tumpukan red, green, dan blue. Terlihat pada Tabel 4.10 untuk nilai matriks kovarian red, 4.11 untuk nilai matriks kovarian green 4.12 untuk nilai matriks kovarian blue berikut.

(m,n)	1	 71	72	73	74	75		144
= 1	3152870,787	 1705306,963	337452,9568	996772,966	107737,716	3817061,973		113741,32
ta		 						
71	1705306,963	 19313554,62	1792519,63	1575383,47	577692,422	17532014,06		948474,97
72	337452,9568	 1792519,63	4605612,022	418331,169	82431,1967	2922235,932		114452,69
73	996772,966	 1575383,471	418331,1692	4088313,3	187953,687	4535821,347		133198,23
74	107737,7156	 577692,4216	82431,19671	187953,687	1129224,26	1278285,747		200106,13
75	3817061,973	 17532014,06	2922235,932	4535821,35	1278285,75	51730978,82		2230449,3
m								
Ria								
i i						IV/	_0	

T S S S S S S S S S S S S S S S S S S S	
in the second se	
Tabel 4.10 Nilai Matrriks Kovarian Red	

Hak Cipta Dilindungi Undeng-Undang

=

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

00 ø Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Un

Kasim Riau

Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Ω		 					
>							
144	113741,3191	 948474,9742	114452,6894	133198,231	200106,128	2230449,314	 4206884,1

Tabel 4.11 Nilai Matriks Kovarian Green

(m,n)	1	 71	72	73	74	75	 144
大1	4757236,991	 2229208,31	325941,5323	1623057,42	250682,917	6107793,933	 108165,22
-71	2229208,31	 29953915,74	1577023,487	2596634,76	1620389,15	30562047,2	 1054826,3
_72	325941,5323	 1577023,487	3938090,577	446311,296	135494,371	2945511,439	 64804,766
73	1623057,421	 2596634,757	446311,2957	6335264,21	516933,627	8027451,913	 144368,09
74	250682,9166	 1620389,147	135494,3706	516933,627	2648424,27	3643608,98	 420481,08
_75	6107793,933	 30562047,2	2945511,439	8027451,91	3643608,98	87356666,22	 2941111
ē		 					
144	108165,2221	 1054826,328	64804,76596	144368,089	420481,079	2941111,042	 4478755,9

Tabel 4.12 Nilai Matriks Kovarian Blue

(m,n)	1	 71	72	73	74	75	 144
1	7649552,749	 2111637,061	1339818,332	3195508,94	791323,09	2936496,048	 740251,6
71	2111637,061	 7950033,403	1651373,505	1832285,71	1923708,44	3726522,106	 1365467,5
72	1339818,332	 1651373,505	7408998,939	1248461,64	699306,769	1779079,267	 529638,18
73	3195508,944	 1832285,715	1248461,64	7607658,07	1031248,22	2932717,281	 690518,4
74	791323,0904	 1923708,442	699306,7689	1031248,22	3608565,71	1985213,574	 996113,53
75	2936496,048	 3726522,106	1779079,267	2932717,28	1985213,57	13104972,13	 1898943,8
an		 					
144	740251,597	 1365467,499	529638,1793	690518,396	996113,527	1898943,794	 8647274,4

5. Mencari Nilai Eigen dan Vector Eigen

Setelah mendapatkan nilai matriks kovarian, maka tahap selanjutnya mencari nilai eigen dan vector eigen yang diproses menggunakan nilai matriks (n) kovarian dengan persamaan (2.5) dan (2.6). berikut adalah nilai eigen dan vektor *eigen* yang didapatkan berdasarkan nilai matriks kovarian setiap elemen red, green, dan blue.

90

N

Hak Cipta Dilindungi Undang-Undang

Tabel 4.13 Nilai Matrik Eigen Red

(m,n)	1	 71	72	73	74	75	 144
-1	-1,8900663	 0	0	0	0	0	 0
o t		 					
71	0	 1897045,553	0	0	0	0	 0
_72	0	 0	1946204,468	0	0	0	 0
-73	0	 0	0	1972726,65	0	0	 0
74	0	 0	0	0	1988829,18	0	 0
75	0	 0	0	0	0	2056063,006	 0
Ζ		 					
144	0	 0	0	0	0	0	 1182778319

Z

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Tabel 4.14 Nilai Matrik Eigen Green

(m,n)	1	 71	72	73	74	75	 144
C 1	-1,6710058	 0	0	0	0	0	 0
		 			•••		
71	0	 2573249,558	0	0	0	0	 0
72	0	 0	2610574,22	0	0	0	 0
73	0	 0	0	2654580,61	0	0	 0
74	0	 0	0	0	2783252,4	0	 0
75	0	 0	0	0	0	2806665,681	 0
144	0	 0	0	0	0	0	 2170470643

Tabel 4.15 Nilai Matrik Eigen Blue

(m,n)	1	 71	72	73	74	75	 144
21	-3,4037188	 0	0	0	0	0	 0
Is		 					
71	0	 2049930,725	0	0	0	0	 0
72	0	 0	2054900,888	0	0	0	 0
C 73	0	 0	0	2062884,81	0	0	 0
74	0	 0	0	0	2218390,19	0	 0
975	0	 0	0	0	0	2362839,829	 0
site		 				A	
144	0	 0	0	0	0	0	 485813540,6

f Sultan Sel

im Riau

Setelah nilai *eigen* diperoleh, tahap selanjutnya adalah menghitung nilai vektor *eigen*. Nilai ini yang nantinya akan digunakan untuk menghitung nilai *eigenfaces*. Berikut Tabel 4.16, 4.17, 4.18 yang berisi vektor *eigen* untuk nilai matrik *red*, *green* dan *blue*.

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

90

ġ

N

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

Tabel 4.16 Matriks Vektor Eigen Red

(m,n)	1	 71	72	73	74	75	 144
D 1	-1,5959	 -0,0089	0,0012	0,0014	0,0183	0,0097	 0,0176
ta	•••	 •••	•••	***	•••	***	
371	6,9388	 -0,0044	-0,0039	0,0026	0,0009	-0,0136	 0,0857
72	-1,8657	 -0,0264	-0,0353	-0,0423	-0,0197	-0,2749	 0,0151
73	1,4745	 0,01612	0,0217	-0,0926	-0,0953	-0,0366	 0,0188
74	5,3602	 -0,0020	0,0820	-0,0357	0,0156	-0,0094	 0,0064
75	-5,4123	 -0,0123	-0,0364	-0,0625	0,1030	-0,0180	 0,1692
U	•••	 				***	
144	0	 -0,0245	-0,0213	-0,0439	-0,0382	-0,1393	 11827

Tabel 4.17 Matriks Vektor Eigen Green

(m,n)	1	 71	72	73	74	75	 144
1	-4,5796	 0,0086	0,0314	-0,0081	0,0198	-0,0122	 -0,0153
	•••	 					
71	-1,1969	 0,0195	-0,0049	0,0198	0,0036	0,0031	 -0,0812
72	-3,4694	 0,0242	0,0605	-0,0859	0,0306	-0,0475	 -0,0087
73	2,1640	 -0,0315	-0,0065	0,1170	0,1040	0,08718	 -0,0184
74	-4,2674	 -0,0281	0,0197	-0,0240	-0,0394	0,0521	 -0,0097
75	-4,3368	 0,0069	0,0742	-0,0222	0,0691	-0,0357	 -0,1673
	•••	 •••			•••		
144	0	 -0,1026	0,1038	0,1163	0,0084	-0,0224	 -0,0081
10							

Sta

arit

Kasim Riau

Tabel 4.18 Matriks Vektor Eigen Blue

(m,n)	1	 71	72	73	74	75	 144
3 1	-4,9960	 0,1173	0,0446	-0,0532	0,0228	-0,0201	 0,0587
0		 •••					
71	2,7061	 0,0164	-0,0103	-0,0046	0,0100	0,0174	 0,0717
72	1,1102	 -0,0151	-0,0077	0,0019	-0,0196	0,0717	 0,0388
273	8,3266	 0,0070	-0,0243	0,0123	0,0110	0,0321	 0,0552
74	3,1225	 0,0073	0,0099	0,0174	0,0162	0,0055	 0,0362
75	2,4980	 -0,0219	0,0215	0,0319	-0,0125	-0,0157	 0,1107
of		 					
144	-1,4418	 -0,0007	-0,0192	0,0019	0,0019	0,0222	 0,0347
It							
an							

6. Menghitung Nilai Eigenfaces

Pada tahap ini, nilai eigenfaces merupakan nilai ciri dari citra data latih. Nilai ini dihitung menggunakan persamaan (2.7) dengan mengalikan

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmlah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

= 0

nilai matriks eigen vector pada Tabel 4.16 untuk elemen red begitu juga seterusnya untuk setiap elemen dengan matriks normalisasi pada Tabel 4.7 untuk nilai matriks Red normalisasi.

Berikut adalah perhitungan nilai eigenfaces pada baris pertama kolom 1 :

	(-1,59594	 -0,0089	0,0012	 0,0176
	6.93889	 -0.0044	 -0.0039	 0.0857
Eigenfaces =	-1,87350	 -0,0264	-0,0353	 0,0151
		 -0,0245	 -0,0213)

Matriks Vektor Eigen144x144

l^{1}	 0,6042	0,6389	 0
)
0	 34,604	30,639	 0
0	 0	0	 0
\	 		 /
0	 0	0	 0/

Matriks Normalisasi_{144x40000}

 $= [(-1,5959455978 \times 1) + (...) + (-0,008904371 \times 0) + (0,00126309 \times 0) +$ $(0,017662436 \ge 0)$]

Sehingga hasil perhitungan eigenfaces untuk nilai reg, green, dan blue seperti pada Tabel, 4.19, 4.20, 4.21 berikut:

Label 4.19 Nilal Eigenfaces Matriks Rea	Tabel 4.19	Nilai	Eigenfaces	Matriks	Red
---	-------------------	-------	------------	---------	-----

		0 0					
(m,n)	1	 20501	20502	20503	20504	20505	 40000
S1	0	 -3,6280	-2,7201	-2,5273	-1,6207	-1,9354	 0
ulta		 		•••	•••	•••	 •••
7 1	0	 -0,5866	-7,7623	-11,3173	-13,1498	-11,9552	 0
72	0	 17,8197	19,2222	19,0261	16,8060	17,4332	 0
73	0	 -11,2844	-7,6244	-5,1809	-5,2598	-7,6676	 0
74	0	 12,0418	9,1712	3,4720	5,2027	3,5830	 0
75	0	 -1,78391	-5,6660	4,7223	3,3118	-0,4470	 0
in		 •••		•••	•••	•••	 •••
1.00							

00

g

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

T 144	0		14,9969	11,1497	9,0399	10,8548	16,1808	 0
K c								
Tabel 4	.20 N	Vilai	Eigenfaces	Matriks Gr	een			
(m,n)	1		20501	20502	20503	20504	20505	 40000
=1	0		36,8229	43,0945	45,9552	47,4709	44,9599	 0
×							•••	 •••
C 71	0		-4,5305	1,2738	0,6076	2,2353	5,1077	 0
Z 72	0		-1,5294	6,5940	5,2353	2,8387	3,5248	 0
073	0		1,1719	11,4074	10,8010	4,1086	5,0899	 0
574	0		11,0069	11,0244	13,3181	9,3443	8,4272	 0
75	0		4,6913	4,8721	4,6965	6,5256	3,3970	 0
고…				•••	•••		•••	 •••
144	0		-1,5787	0,1472	0,2570	-2,0337	-2,1823	 0
C								

Tabel 4.21 Nilai Eigenfaces Matriks Blue

		0 0					
(m,n)	1	 20501	20502	20503	20504	20505	 40000
		-16,0681	-15,9715	-14,0847	-13,6432	-10,1782	
1	0						 0
		21,0922	15,8707	14,3733	13,4866	12,9806	
71	0						 0
		-24,9714	-19,5242	-16,6749	-15,1516	-17,5507	
72	0						 0
		-4,9862	-2,9801	-2,9670	-2,8329	-3,1341	
73	0						 0
at		-15,7822	-11,6420	-10,5364	-9,8487	-9,9958	
<u>°</u> 74	0						 0
(n)		17,1803	12,3297	11,5917	11,0441	9,9740	
275	0						 0
n		 	•••				
CI		15,4043	11,4268	10,3832	9,7397	9,5612	
144	0						 0

iversity Mengitung Project Image

Riau

of Si Setelah nilai eigenfaces diperoleh langkah selanjutnya adalah mencari nilai Project Image dari citra data latidah dengan persamaan (2.8). nilai Project Image dapat dihtung dengan mengalikan nilai matriks normalisasi dengan matriks nilai eigenface pada Tabel diatas yang sudah di transpose. Berikut perhitungan project *image* dengan menggunakan persamaan (2.7)

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

IV-14

Dilarang mengutip sebagian atau seluruh kanya tulis ini tanpa mencantumkan dan menyebutkan sumber

N

Hak croject Image = 0,6042 0,6389 0 34,604 30,639 0 0 ... Х 0 0 0 0 0 0 0 0 Matriks Normalisasi_{144x40000} 0 0 0 0 -3,6280 -0,5866 17,8197 0 2,7201 7,7623 19,2222 0 0 0 0 0 ... Matriks *Eigenfaces*^T40000x144 $= [(1 \times 0) + \ldots + (0,6042 \times -3,6280) + (0,6389 \times -2,7201) + \ldots (0 \times 0)]$

= -256547,0678

perkalian matriks tersebut menghasilkan nilai Project Image untuk setiap nilai matrik red, green dan blue dapat dilihat pada tabel 4.22, 4.23, 4.24 berikut:

(m,n)	1	 71	72	73	74	75	 144
1	-256547,0678	 2113892,488	1016683,08	-1489547,7	-1002701	-743289,61	 113741,3191
271	379323,1896	 4198061,204	6577828,08	-6692175,5	-5116980	-3932393	 5723069,534
72	317876,4831	 1808126,741	904588,927	-1023586,3	-541586,1	-544571,12	 1116195,815
_73	-224925,5971	 2664200,889	864235,734	-1922156,5	-1306883	-991873,94	 997004,6084
74	247574,8986	 738172,1331	366775,775	-592397,14	-633607,6	-2058,4657	 328022,3377
75	3810199,644	 16777925,9	4408202,59	-18726145	-13471568	-6814553,1	 9908238,873
ity.		 					
144	629668,8778	 1540069,456	802200,296	-558498,69	-1170064	625997,931	 732877,8586

Tabel 4.22 Matriks Project Image Red

S

Tabel 4.23 Matriks Project Image Green

(m,n)	1	 71	72	73	74	75	 144
ar	3978928,968	 -1917160,851	4805703,75	2322161,8	2639036,5	-4406702,5	 -2524258,61
if]	•••	 		•••	•••	•••	 •••
71	35093972,16	 -1500177,241	24003621,6	11350320	13693209	-12422448	 -6924826,36
72	2259274,995	 -303148,4184	3230991,46	1648505,3	2061949,2	-2361211,6	 -701068,2474

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Hak Cipta Dilindungi Undang-Undang

~

0.5	
100	
0.5	
100	
100	
1000	
0	
-	
-	
100	
1.02	
-	
10	
10.0	
-	
the second	
_	
-	
1.00	
- 927	
- m	
1.00	
- 67	
25	
0	
21.5	
- 242	
-	
-	
1.0	
0.5	
100	
100	
0.5	
100	
-	
1.0	
0.00	
76	
0.00	
100	
The second	
100	
-	
Sec.	
-	
- 25	
5.2	
- 0.0	
-	
~	
24.5	
- 140	
5	
-	
SIL	
S	
ulis i	
ulis in	
ulis ini	
ulis ini	
ulis ini t	
ulis ini ta	
ulis ini ta	
ulis ini tan	
ulis ini tan	
ulis ini tanp	
ulis ini tanpa	
ulis ini tanpa	
ulis ini tanpa	
ulis ini tanpa r	
ulis ini tanpa n	
ulis ini tanpa m	
ulis ini tanpa me	
ulis ini tanpa me	
ulis ini tanpa mer	
ulis ini tanpa men	
ulis ini tanpa meno	
ulis ini tanpa menca	
ulis ini tanpa menca	
ulis ini tanpa mencar	
ulis ini tanpa mencan	
ulis ini tanpa mencant	
ulis ini tanpa mencantu	
ulis ini tanpa mencantu	
ulis ini tanpa mencantun	
ulis ini tanpa mencantum	
ulis ini tanpa mencantumi	
ulis ini tanpa mencantumk	
ulis ini tanpa mencantumka	
ulis ini tanpa mencantumka	
ulis ini tanpa mencantumkar	
ulis ini tanpa mencantumkan	
ulis ini tanpa mencantumkan (
ulis ini tanpa mencantumkan d	
ulis ini tanpa mencantumkan di	
ulis ini tanpa mencantumkan da	
ulis ini tanpa mencantumkan dar	
ulis ini tanpa mencantumkan dan	
ulis ini tanpa mencantumkan dan	
ulis ini tanpa mencantumkan dan r	
ulis ini tanpa mencantumkan dan n	
ulis ini tanpa mencantumkan dan m	
ulis ini tanpa mencantumkan dan me	
ulis ini tanpa mencantumkan dan me	
ulis ini tanpa mencantumkan dan mer	
ulis ini tanpa mencantumkan dan men	
ulis ini tanpa mencantumkan dan meny	
ulis ini tanpa mencantumkan dan menye	
ulis ini tanpa mencantumkan dan menye	
ulis ini tanpa mencantumkan dan menyet	
ulis ini tanpa mencantumkan dan menyeb	
ulis ini tanpa mencantumkan dan menyebu	
ulis ini tanpa mencantumkan dan menyebu	
ulis ini tanpa mencantumkan dan menyebut	
ulis ini tanpa mencantumkan dan menyebutk	
ulis ini tanpa mencantumkan dan menyebutka	
ulis ini tanpa mencantumkan dan menyebutka	
ulis ini tanpa mencantumkan dan menyebutkar	
ulis ini tanpa mencantumkan dan menyebutkan	
ulis ini tanpa mencantumkan dan menyebutkan	
ulis ini tanpa mencantumkan dan menyebutkan s	

- 00 Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- o Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

73	4740151,808	 -886124,8333	5935332,27	3010888,4	2948505,5	-5833657,6	 -2311557,398
74	3556011,046	 -163544,6654	3633007	2062872,9	2612131,3	-2520549,9	 -671364,9164
-75	51346497,39	 -5499009,34	58857476,7	25931642	31775204	-42759959	 -14790969,66
Ø		 				•••	 •••
144	2274767,382	 -1108558,846	2818010,52	1531683,3	2110093,6	-3063119,2	 -565320,314

Tabel 4.24 Matriks Project Image Blue

(m,n)171727374751441-720466,61511406971,26261117,28-1738947,25477707,2-956736,951615678,6631615678,6631615678,66371381716,23311527662,9061812409,68-2302216,94998475-1314326,51315958,60472125602,306571293,2302738544,809-1337338,93136980,7-561660,86899393,494273-468697,91481313826,365395750,74-1474178,45034488,4-619194,961410341,59474-266113,8095814202,57871912412,34-1174869,62161416,5-13731831154066,85575843288,66112444702,7032797653,93-22362328924577,5-3043028,81481587,78214423144,9455184189,02651548546,29-962691,532394418-298667,131645051,42			- e	0					
1 -720466,6151 -1406971,26 261117,28 -1738947,2 5477707,2 -956736,95 1615678,663	(m,n)	1		71	72	73	74	75	 144
71381716,23311527662,9061812409,68-2302216,94998475-1314326,51315958,60472125602,306571293,2302738544,809-1337338,93136980,7-561660,86899393,494273-468697,91481313826,365395750,74-1474178,45034488,4-619194,961410341,59474-266113,8095814202,57871912412,34-1174869,62161416,5-13731831154066,85575843288,66112444702,7032797653,93-22362328924577,5-3043028,81481587,7821410551,4214423144,9455184189,02651548546,29-962691,532394418-298667,131645051,42	C 1	-720466,6151		-1406971,26	261117,28	-1738947,2	5477707,2	-956736,95	 1615678,663
71 381716,2331 -1527662,906 1812409,68 -2302216,9 4998475 -1314326,5 1315958,604 72 125602,306 -571293,2302 738544,809 -1337338,9 3136980,7 -561660,86 899393,4942 73 -468697,9148 -1313826,365 395750,74 -1474178,4 5034488,4 -619194,96 1410341,594 74 -266113,8095 -814202,5787 1912412,34 -1174869,6 2161416,5 -1373183 1154066,855 75 843288,6611 -2444702,703 2797653,93 -2236232 8924577,5 -3043028,8 1481587,782 144 23144,9455 184189,0265 1548546,29 -962691,53 2394418 -298667,13 1645051,42	K								
72 125602,306 -571293,2302 738544,809 -1337338,9 3136980,7 -561660,86 899393,4942 73 -468697,9148 -1313826,365 395750,74 -1474178,4 5034488,4 -619194,96 1410341,594 74 -266113,8095 -814202,5787 1912412,34 -1174869,6 2161416,5 -1373183 1154066,855 75 843288,6611 -2444702,703 2797653,93 -2236232 8924577,5 -3043028,8 1481587,782 1645051,42	71	381716,2331		-1527662,906	1812409,68	-2302216,9	4998475	-1314326,5	 1315958,604
73 -468697,9148 -1313826,365 395750,74 -1474178,4 5034488,4 -619194,96 1410341,594 74 -266113,8095 -814202,5787 1912412,34 -1174869,6 2161416,5 -1373183 1154066,855 75 843288,6611 -2444702,703 2797653,93 -2236232 8924577,5 -3043028,8 1481587,782 1481587,782 1481587,782 144 23144,9455 184189,0265 1548546,29 -962691,53 2394418 -298667,13 1645051,42	_72	125602,306		-571293,2302	738544,809	-1337338,9	3136980,7	-561660,86	 899393,4942
74 -266113,8095 -814202,5787 1912412,34 -1174869,6 2161416,5 -1373183 1154066,855 75 843288,6611 -2444702,703 2797653,93 -2236232 8924577,5 -3043028,8 1481587,782 1481587,782 144 23144,9455 184189,0265 1548546,29 -962691,53 2394418 -298667,13 1645051,42	C 73	-468697,9148		-1313826,365	395750,74	-1474178,4	5034488,4	-619194,96	 1410341,594
75 843288,6611 -2444702,703 2797653,93 -2236232 8924577,5 -3043028,8 1481587,782 1481587,782 144 23144,9455 184189,0265 1548546,29 -962691,53 2394418 -298667,13 1645051,42	74	-266113,8095		-814202,5787	1912412,34	-1174869,6	2161416,5	-1373183	 1154066,855
<td>75</td> <td>843288,6611</td> <td></td> <td>-2444702,703</td> <td>2797653,93</td> <td>-2236232</td> <td>8924577,5</td> <td>-3043028,8</td> <td> 1481587,782</td>	75	843288,6611		-2444702,703	2797653,93	-2236232	8924577,5	-3043028,8	 1481587,782
144 23144,9455 184189,0265 1548546,29 -962691,53 2394418 -298667,13 1645051,42									
	144	23144,9455		184189,0265	1548546,29	-962691,53	2394418	-298667,13	 1645051,42

Setelah mendapat nilai project image langkah selanjutnya adalah mereduksi nilai project image, agar tidak terus membengkak setiap kali penambahan data. Cara yang dapat dilakukan untuk menghidari hal tersebut adalah melakukan reduksi pada kolom nilai project image dengan sebuah variabel n. Dalam penelitian ini nilai Project Image yang diambil adalah bagian sebelah kanan karena nilai Project Image terbesar selalu berada disebelah kanan, semakin kekiri nilai Project Image semakin kecil (Ria Kurniati, 2017). Sebagai contoh nilai variabel n yang digunakan adalah 2. Karena dalam penelitian ini menggunakan nilai RGB, maka total nilai Project Image adalah 6 kolom. Berikut hasil ketika sudah dilakukan reduksi kolom dengan variabel n dapat dilihat pada Tabel 4.25.

Tabel 4.25 Nilai Project Image RGB setelah direduksi

Ita	Re	ed	Gr	een	Blue		
(m,n)	1	2	3	4	5	6	
ya 1	2723096	1132077	-5847132	-2524259	-3183278	1615679	
ITI							
71	14261891	5723070	-27744293	-6924826	-1299417	1315959	
72	2496045	1116196	-2872743	-701068,2	-1668090	899393,5	

Pengutipan

hanya untuk

kepentingan pendidikan, penelitian,

penulisan

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Riau

N

Hak Cipta Dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

· 73	2665876	997004,6	-6667579	-2311557	-2953340	1410342
74	1346279	328022,3	-4030364	-671364,9	-714301	1154067
75	26587556	9908239	-58031294	-14790970	-4398814	1481588
tt ۵						
3 144	2572689	732877,9	-3384362	-565320,3	-563950	1645051

Tabel 4.25 berisi nilai project image yang telah direduksi, yang mana setiap nilai project image matriks *red* pada tabel 4.22, *green* pada tabel 4.23, dan *blue* pada tabel 4.24 diambil nilai 2 kolom yang sebelah kanan yaitu seluruh nilai kolom ke 143, dan 144.

Tahap Ekstraksi Data Uji

langkah selanjutnya adalah menghitung nilai citra data uji. Berikut nilai RGB dari citra data uji yang telah melalui tahap *preprocessing:*

Tabel 4.26 Nilai *Red* dari Citra Uji

1	 20501	20502	20503	20504	20505	 40000
0	 23	28	24	24	30	 0

Tabel 4.26 berisikan nilai matrik red untuk citra uji yang awalnya berdimensi 200 x 200

dijadikan martiks satu dimensi sehingga menjadi matriks berdimensi 1 x 40000

Tabel 4.27 Nilai Green dari Citra Uji

			9					
1	•••	20501	20502	20503	20504	20505	 40000	
0		32	37	33	33	39	 0	

Tabel 4.27 berisikan nilai matrik green untuk citra uji yang awalnya berdimensi 200 x

200 dijadikan martiks satu dimensi sehingga menjadi matriks berdimensi 1 x 40000

Tabel 4.28 Nilai Blue dari Citra Uji

I dot 1110	1 (IIIdi Ditti	c duit old	u oji				
1		20501	20502	20503	20504	20505	 40000
2 0		29	35	33	33	38	 0

Tabel 4.28 berisikan nilai matrik *blue* untuk citra uji yang awalnya berdimensi 200 x 200 dijadikan martiks satu dimensi sehingga menjadi matriks berdimensi 1 x 40000

Tahapan Ekstraksi data PCA untuk mendapatkan nilai ciri citrasedikit berbeda dengan tahapan yang digunakan untuk mencari nilai citra data latih. Hal yang membedakan pada tahapan uji ini adalah tidak perlu melakukan pencarian nilai mean, kovarian, nilai *eigen* dan vektor *eigen* namun lebih terfokus pada pencarian *Project Image* atau nilai ciri dari citra data uji. Berikut ini adalah tahapan yang dilakukan dalam ekstraksi ciri citra data uji.

1. Menghitung Matriks Normalisasi (Φ)Citra Data Uji

a. Pengutipan hany

hanya untuk

kepentingan pendidikan, penelitian,

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

penulisan

karya ilmiah,

, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Mencari niali matriks normalisasi untuk citra uji dilakukan dengan menghitung selisih antara nilai citra yang akan diuji dengan nilai rata-rata yang telah didapatkan saat pelatihan denganmenggunakan rumus (2.9). nilai citra uji red pada kolom 20501 dalam tabel 4.24 adalah $\Gamma = 23$, dan nilai ψ red pada kolom 20501 dalam tabel 4.4 adalah $\psi = 44,396$, maka nilai normalisasinya adalah:

$$\Phi = 23 - 44,396 = -21,396$$

Karena nilai normalisasi pada kolom 20501 dibawah nol,maka diganti nilainya menjadi 0.

J

Tabel 4.29 Matriks Normalisasi (Φ) Red Citra Data Uji

1	 20501	20502	20503	20504	20505	 40000
0	 0	0	0	0	0	 0

Pada tabel 4.29 berisikan nilai matriks normalisasi dari satu citra uji yang berdimensi 1 x 40000

Tabel 4.30 Matriks Normalisasi (Φ) Green Citra Data Uji

				-		
1	 20501	20502	20503	20504	20505	 40000
0	 0	0	0	0	0	 0

Pada tabel 4.30 berisikan nilai matriks normalisasi dari satu citra uji yang berdimensi 1 x

40000

Tabel 4.31 Matriks Normalisasi (Φ) Blue Citra Data Uji

1	 20501	20502	20503	20504	20505	 40000
0	 0	0	0	0	30	 0

Pada tabel 4.31 berisikan nilai matriks normalisasi dari satu citra uji yang berdimensi 1 x 40000

2. Menghitung Project Image

Setelah mencari nilai matriks normalisasi dari citra data uji, langkah selanjutnya adalah mencari nilai *project image* dari citra data uji tersebut dengan menggunakan persamaan (2.10). dengan persamaan tersebut nilai *project image* dapat dihitung dengan mengalikan matriks normalisasi pada tabel 4.27 untuk nilai *Red*, tabel 4.28 untuk nilai *green*, dan tabel 4.29 untuk nilai *blue* dengan matriks nilai *eigenface* yang didapat pada ekstraksi data latih pada tabel 4.19 untuk untuk

IK

UIN

Ka

Dilarang mengutip

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

sebagian atau seluruh karya tulis

ini tanpa mencantumkan dan menyebutkan sumber

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Riau

N

nilai Red, tabel 4.20 untuk nilai green, dan tabel 4.21 untuk nilai blue yang telah ditranspose. $Project Image = (0 \dots 0 0 \dots$ 0) *x Matriks* $\Phi_{1x40000}$ 0 0 0 0 -3,6280 -0,586617,8197 0 2,7201 7,7623 19,2222 0 0 0 0 0

Matriks *Eigenfaces*^T_{40000x144}

Project Image = $[(0 \times 0) + (...) + (0 \times -36280) + (0 \times -27201) + (...) + (0 \times 0)$

= 217061,1

Tabel 4.32 Nilai Project Image Red citra Uji

1	 71	72	73	74	75	 144
					-	
217061,1	 1080868	740462,3	-607964	-713675	82994,6	 838025,4

Tabel	4.33	Nilai	Project	Image	Green	citra	Uii
Labu	T .JJ	1 41101	IIUjeet	mage	ortun	uua	Ult

and the second s	-	_		-			
ē 1		71	72	73	74	75	 144
S						-	
1460235		-556785	2532533	1661259	1688547	2105213	 -580793

Tabel 4.34 Nilai Project Image Blue citra Uji

	•••	/1	/2	73	74	75	 144
-235679		-723071	526312,7	-927997	2648479	-673383	 1256069

Setelah nilai Project Image didapatkan langkah selanjutnya adalah melakukan reduksi dari nilai project image citra data uji yang diperoleh, nilai variabel N yang digunakan harus sesuai dengan nilai N yang digunakan pada saat melakukan ekstraksi ciri citra latih yaitu 2, dikarenakan penelitian ini menggunakan nilai RGB maka nilai PI setiap tumpukan red, green dan blue digabungkan sehingga nilai project image berjumlah 6 kolom. Berikut hasil reduksi dari nilai Project image citra uji :

Tabel 4.35 Nilai Project Image setelah direduksi

i re	ed	gre	en	BI	ue
ip 1	2	3	4	5	6
1520594	838025,4	-2231092	-580793	-1613128	1256069

Pada tabel 4.35 berisikan nilai project image yang telah direduksi, yang mana diambil nilai pada kolom ke 143 dan 144 untuk setiap nilai project image red pada tabel 4.32, project image green pada tabel 4.33, dan project image blue pada tabel 4.34.

Setelah diperoleh nilai project image yang telah direduksi, langkah selanjutnya adalah melakukan klasifikasi menggunakan LVQ3.

4.1.3 Klasifikasi LVQ 3

Pada tahapan ini dilakukan pengklasifikasian data daun tanaman obat berdasarkan pengambilan gambar yaitu baigian depan dan bagaian belakang dan juga berdasarkan manfaat dari masing-masing daun tanaman obat. Proses klasifikasi dilakukan dengan menggunakan salah satu metode jaringan syaraf tiruan (JST) yaitu Learning Vector Quantization 3(LVQ3). Klasifikasi LVQ 3memiliki dua tahap, yaitu pelatihan dan pengujian.

1. Pelatihan LVQ 3

Proses pelatihan digambarkan pada flowchart dibawah ini.

State Islamic University of Sultan Syarif Kasim Riau

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Hak Cipta Dilindungi Undang-Undang

Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

© Hak cipta milik UIN Suska Riau

State Islamic University of Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Gambar 4.5 Flowchart Pelatihan LVQ3

Dilarang mengutip

N

Data yang digunakan sebagai *input*an pada proses LVQ3 ini adalah Nilai *Project Image* RGB setelah direduksi. Adapun nilai *Project Image* berjumlah 144 baris dan 6 kolom.

a. Normalisasi

Agar data berada dalam *range* tertentu maka dari itu diperlukannya normalisasi data. Untuk perhitungannya menggunakan persamaan (2.11). berdasarkan tabel 4.25 dapat diketahui nilai maksimal dan minimal untuk setiap kolom. Dibawah ini dijelaskan perhitungan normalisasi

Tabel 4.36 Nilai maksimal dan minimal data

00						
D	1	2	3	4	5	6
Max	44989872	15621821	-584497,4	-74213,4	-83809,319	8599297,892
Min	351320	-256541	-70979428	-20987759	-11338037	3201,50188

Data Ke-1 :
$$\frac{2723096 - 351320}{44989872 - 351320} = 0,053133$$

$$\frac{1132077 - (-256541)}{15621821 - (-256541)} = 0,087453$$

$$\frac{-5847132 - (-7097428)}{-584497,4 - (-7097429)} = 0,9252413$$

 $\frac{-2524259 - (-20987759)}{-74213,4 - (-20987759)} = 0,\ 8828489$

$$\frac{-3183277,6-(-11338037)}{-83809,319-(-11338037)} = 0,72459519$$

 $\frac{1615678,663 - (3201,50188)}{8599297,892 - (3201,50188)} = 0,18758249$

Selanjutnya, lakukan hal yang sama untuk semua data *Project Image* data latih yang berjumlah 144 data. Pada tabel 4.37 dibawah ini akan ditampilkan nilai Ciri yang telah dinormalisasi

Pengutipan Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

State Islamic University of

Kasim Riau

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

IV-22

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

N

Tabel 4.37 Nilai Normalisasi

(m,n)	1	2	3	4	5	6
ipt 1	0,053133	0,087453	0,9252413	0,8828489	0,72459519	0,18758249
a m		••••	•••			
71	0,311627	0,376589	0,6141797	0,6724318	0,89198655	0,152715493
~ 72	0,048046	0,086453	0,9674942	0,9700264	0,85922795	0,104255694
₹ 73	0,051851	0,078947	0,9135864	0,8930194	0,74502637	0,163695244
0 74 C	0,022289	0,036815	0,9510495	0,9714467	0,94397732	0,133882323
% 75	0,587748	0,640166	0,1839356	0,2963051	0,61658814	0,171983446
7						
144	0,049763	0,062312	0,9602263	0,9765173	0,95733689	0,190999477

b. Maksimal Epoch, *Learning Rate* (α), Minimal α , dan nilai window

Pada penelitian ini, parameter yang digunakan adalah ;

- 1. Maksimal Epoch = 1000
- 2. Learning Rate = 0.05
- 3. Min $\alpha = 0.0001$
- 4. Window = 0.3

c. Inisialisasi data (x), bobot awal (W) dan kelas target (T)

Pemilihan data bobot awal dilakukan dengan memilih satu ciri diantaa data ciri yang lain dalam satu target yang sama. Sedangkan untuk data yang akan dilatih akan diambil dari data selain data yang sudah digunakan untuk bobot awal. Dibawah ini ditampilkan beberapa tabel data yang digunakan pada tahapan ini.

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Sultan Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang

(m,n)

1

3

4

5

6

7

8

9

10

11

12

16

•••

143

144

0 2

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

- 9 Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Tabel 4.39 Nilai Data (x) (m,n)1 13 0,045952 14 0,059669 ŝ 15 0,506277

Tabel 4.38 Nilai Bobot awal (W)

1

0,053133

0,059237

0,558718

0,008617

0,000336

0,209852

0,579875

0,087396

0,042831

0,168736

0,341969

0,020139

0,009364

...

0,395642

0,049763

2

0,087453

0,041747

0,6475

0,045982

0,022158

0,246686

0,596305

0,103831

0,077854

0,148677

0,469485

0,056389

2

0,079699

0,043556

0,577454

0,045241

...

0,49932

0,062312

3

0,9252413

0,8884038

0,0984885

0,9721372

0,9995531

0,5716385

0,2656377

0,7831366

0,893236

0,8472959

0,5382036

0.9839664

3

0,9338899

0,8837683

0,1724585

0,9731827

..

0,450966

0,9602263

4

0,8828489

0,8782696

0,1519731

0,9723861

0,9988995

0,5059734

0,4320185

0,7911668

0,9022573

0,8101165

0,5965165

0,9819862

4

0,890749

0,8731005

0,199222

0,9737356

...

0,5733116

0,9765173

5

0,72459519

0,71069416

0,62959472

0,93930102

0,96456825

0,7116307

0,66131338

0,95777932

0,95656275

0,43884074

0,83958477

0,89452743

5

0,74598324

0,70191177

0,66384103

0,94226925

0,84960404

0,95733689

6

0,18758249

0,212179364

0,232332661

0,060746606

0,065498631

0,12334859

0,397515001

0,064397912

0,078646217

0,476522478

0,220605845

0,081228433

6

0,168447054

0,221694754

0,178956058

0,058514753

•••

0,10513383

0,190999477

Target

1

2

3

4

5

6

7

8

9 10

11

12

Target

1 2

3

4

...

11

12

d. Perhitungan

Epoch 1

Data ke-13 = [0,0459 0,07969 0,9338 0,8907 0,7459 0,1684]

Target = 1

Riau

W1 = [0,0531 0,0874 0,9252 0,8828 0,7245 0,1875] T=1

mulik

Dilarang mengutip

Pengutipan Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

N

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

T=D1

Syarif Kasim Riau

Hitung jarak *Euclidean Distance* dengan menggunakan persamaan (2.12).

perhitungannya dijelaskan seperti berikut ini :

 $(0.0459-0.0531)^2 + (0.07969-0.0874)^2 + (0.9338-0.9252)^2 + (0.8907-0.8828)^2 + (0.7459-0.7245)^2 + (0.1684-0.1875)^2$ J1=

= 0,032749

Lakukan hal yang sama untuk bobot ke 2-12, sehingga diperoleh nilai seperti yang diperlihatkan berikut ini.

Tabel	4.40	Nilai	Jarak	Bobot	Data	ke-1

Jarak ke-	Nilai Jarak	Jarak Ke-	Nilai Jarak
J1	0,0327	J7	1,1263
J2	0,0836	J8	0,3010
J3	1,3589	J9	0,2328
J4	0,2441	J10	0,4723
J5	0,2824	J11	0,7029
J6	0,5807	J12	0,2042

Sehingga didapat pemenang (D1) dan runner up (D2) yaitu :

D1 = 0,0327

D2 = 0,0836

State Islamic University of Karena T=D1 maka lakukan perubahan bobot pada D1 (pemenang pertama) menggunakan persamaan (2.13) maka hasil perubahan bobot akan dijabarkan di bawah ini.

W11(baru) = 0,0531 + 0,001(0,0459 - 0,0531)= 0,0531

W12(baru) = 0.0874 + 0.001(0.0796 - 0.0874)= 0,0874

Hak Cipta Dilindungi Undang-Undang

Hak cipta milik

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

00 Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

ġ Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Dilarang

	-	
	- · ·	
	1	
	CD	
	-	
7	ō	
2	-	
	- ·	
	3	
	⊐	
	-	
	=	1
	100	
	<u> </u>	
	-	
	-	
	0.0	
	and a second	
	<u></u>	
	_	
		•
	2	
	-	
	3.	
	× .	
	QD	
	-	
	0	
	60 .	
	<u> </u>	
	20	
2	< .	
		1
	and the second	
	~	
	00	
	22	
	CD	
	0	í
	00	
		i
5		
	21° 4	
	3	
	_	
		1
	-	
	10	
	<u>.</u>	
	cp	
	-	
	- · · ·	
	-	
	-	
	~	
	K	
	Kan	
	kan	
	karva	
	karva	
	karva t	
	karva tu	
	karva tul	
	karva tulis	
	karva tulis	
	karva tulis i	
	karva tulis in	
	karva tulis ini	
	karva tulis ini o	
	karva tulis ini di	
	karva tulis ini da	
	karva tulis ini dala	
	karva tulis ini dala	
	karva tulis ini dalan	
	karva tulis ini dalam	
	karva tulis ini dalam l	
	karva tulis ini dalam b	
	karva tulis ini dalam be	
	karva tulis ini dalam ber	
	karva tulis ini dalam bent	
	karva tulis ini dalam bentu	
	karva tulis ini dalam bentuk	
	karva tulis ini dalam bentuk	
	karva tulis ini dalam bentuk a	
	karva tulis ini dalam bentuk a	
	karva tulis ini dalam bentuk ap	
	karva tulis ini dalam bentuk apa	
	karva tulis ini dalam bentuk apar	
	karva tulis ini dalam bentuk apapi	
	karva tulis ini dalam bentuk apapu	
	karva tulis ini dalam bentuk apapun	
	karva tulis ini dalam bentuk apapun	
	karva tulis ini dalam bentuk apapun ti	
	karva tulis ini dalam bentuk apapun ta	
	karva tulis ini dalam bentuk apapun tan	
	karva tulis ini dalam bentuk apapun tanp	
	karva tulis ini dalam bentuk apapun tanpo	
	karva tulis ini dalam bentuk apapun tanpa	
	karva tulis ini dalam bentuk apapun tanpa i	
	karva tulis ini dalam bentuk apapun tanpa ia	
	karva tulis ini dalam bentuk apapun tanpa izi	
	karva tulis ini dalam bentuk apapun tanpa izin	
	karva tulis ini dalam bentuk apapun tanpa izin	
	karva tulis ini dalam bentuk apapun tanpa izin L	
	karva tulis ini dalam bentuk apapun tanpa izin U	
	karva tulis ini dalam bentuk apapun tanpa izin Ult	
	karva tulis ini dalam bentuk apapun tanpa izin UIN	
	karva tulis ini dalam bentuk apapun tanpa izin UIN	
	karva tulis ini dalam bentuk apapun tanpa izin UIN S	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Su	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Su	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Sus	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Susk	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Suska	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Suska	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Suska F	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Suska R	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Suska Ria	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Suska Riai	
	karva tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau	

W13(baru) = 0,9252 + 0,001(0,9338 - 0,9252)	= 0,9252
W14(baru) = 0,8828 + 0,001(0,8907 - 0,0874)	= 0,8829
W15(baru) = 0,7245 + 0,001(0,7459 - 0,7245)	= 0,7246
W16(baru) = 0,1875 + 0,001(0,1684- 0,1875)	= 0,1876

Sehingga perubahan bobot yang terjadi pada bobot ke 1 seperti yang diperlihatkan pada tabel 4.41 dibawah ini.

3454				
Tabel	4.41	Bobot	baru	(W(baru))

(m,n)	1	2	3	4	5	6	Target
1	0,0531	0,087	0,9252	0,8829	0,7246	0,1876	1
2	0,0592	0,0417	0,8884	0,8782	0,7106	0,2121	2
3	0,5587	0,6475	0,0984	0,1519	0,6295	0,2323	3
4	0,0086	0,0459	0,9721	0,9723	0,9393	0,0607	4
5	0,0003	0,0221	0,9995	0,9988	0,9645	0,0654	5
6	0,2098	0,2466	0,5716	0,5059	0,7116	0,1233	6
7	0,5798	0,5963	0,2656	0,4320	0,6613	0,3975	7
8	0,0873	0,1038	0,7831	0,7911	0,9577	0,0643	8
9	0,0428	0,0778	0,8932	0,9022	0,9565	0,0786	9
10	0,1687	0,1486	0,8472	0,8101	0,4388	0,4765	10
an 11	0,3419	0,4694	0,5382	0,5965	0,8395	0,2206	11
5 12	0,0201	0,0563	0,9839	0,9819	0,8945	0,0812	12

Setelah pembaharuan bobot, perhitungan akan berlanjut untuk data ke 14 dan ssterusnya. Ketika proses telah berjalan untuk data ke-13 sampai dengan data ke-144, maka epoch pertama sudah selesai. Untuk memulai epoch kedua sebelumnya lakukan pengurangan Learning Rate. Perhitungan untuk pengurangan Learning Rate adalah sebagai berikut :

 $\alpha = 0.05 - 0.1 * 0.05$

=0,045

Syarif Kasim Riau

Hak Cipta Dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

diperolel
data uji 1
4.43 beri
fSt
Tabel 4.4
1 1
1520594
/arif Kasim

Ha Proses akan berhenti apabila menemui salah satu dari dua kondisi yang ada, yaitu pertamaa saat nilai epoch telah mencapai nilai maksimal epoch dan yang kedua saat Learning Rate sama dengan nilai minimal Learning Rate. Setelah proses pelatihan selesai dilakukan, maka didapatkan hasil akhir yaitu bobot terbaik yang nantinya nilai bobot terbaikini akan digunakan pada tahapan pengujian. Nilai bobot terbaik dari hasil perhitungan manual diatas pada berhenti pada epoch ke 59 ditampilkan pada tabel 4.42 dibawah ini :

Т	abel	4.42	Nilai	Bobot	Terbaik	Hasil	Pelatihan	LVQ3
---	------	------	-------	-------	---------	-------	-----------	------

_(m,n)	1	2	3	4	5	6	Target
- 1	0.0617	0.1236	0.8903	0.7885	0.7511	0.2352	1
ē 2	0.0570	0.0289	0.8831	0.8863	0.7237	0.2172	2
3	0.5855	0.7145	0.0876	0.1911	0.6229	0.2113	3
4	0.0131	0.0464	0.9574	0.9672	0.9390	0.0912	4
5	0.0038	0.0293	0.9869	0.9855	0.9659	0.0308	5
6	0.3244	0.3562	0.4809	0.4072	0.5147	0.2829	6
7	0.7314	0.8060	0.1774	0.3966	0.6330	0.5135	7
8	0.0845	0.0620	0.8217	0.7946	0.9481	0.0422	8
9	0.0555	0.1086	0.8691	0.9002	0.9568	0.0864	9
10	0.2026	0.1748	0.8135	0.7587	0.1743	0.5671	10
11	0.3309	0.4353	0.5638	0.6676	0.8813	0.1556	11
\$ 12	0.0358	0.0599	0.9751	0.9776	0.9142	0.1187	12

2. Pengujian LVQ

Nilai bobot yang dihasilkan pada proses pelatihan digunakan sebagai data acuan pada proses pengujian. data uji yang digunakan adalah data uji yang h dari nilai *project image* yang telah direduksi pada proses ekstraksi ciri menggunakan PCA. Data uji yang digunakan akan ditampilkan pada tabel ikut :

43 Nilai Data Uji

an 1	2	3	4	5	6	Target
1520594	838025,4	-2231092	-580793	-1613128	1256069	12

Ka

a. Pengutipan han

hanya untuk kepentingan pendidikan, penelitian, penulisan

sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

N

a. Normalisasi

Perhitungan normalisasi pada tahapan pengujian menggunakan persamaan 2.11. untuk nilai maksimal dan minimalnya diambil dari tabel 4.36 yaitu nilai maksimal dan minimal pada normalisasi data pelatihan. Dibawah ini dijelaskan perhitungan normalisasi.

Normalisasi Data x1 =
$$\frac{15202594 - 351320}{44989872 - 351320}$$
 = 0.2619
Normalisasi Data x2 = $\frac{838025, 4 - (-256541)}{15621821 - (-256541)}$ = 0,0689
Normalisasi Data x3 = $\frac{-2231092 - (-70979428)}{-584497, 4 - (-70979428)}$ = 0,9766
Normalisasi Data x4 = $\frac{-580793 - (-20987759)}{-74213, 4 - (-20987759)}$ = 0,9757
Normalisasi Data x5 = $\frac{-1613127, 501 - (-11338037)}{-83809, 319 - (-11338037)}$ = 0,8641
Normalisasi Data x6 = $\frac{1256066, 142 - (3201, 502)}{8599298 - (3201, 502)}$ = 0,1457

Tabel 4.44 Nilai Normalisasi data Uji

			,		
1	2	3	4	5	6
0,0261	0,0689	0,9766	0,9757	0,8641	0,1457

Lakukan hal yang sama untuk semua hasil *Project Image* yang telah direduksi untuk data uji yang berjumlah 36 data.

b. Perhitungan

Data Uji = [0,0261 0,0689 0,976 0,9757 0,8641 0,1457] T=1

Gunakan bobot hasil pelatihan yang ditampilkan pada tabel 4.40

W1 = [0.0617 0.1236 0.8903 0.7885 0.7511 0.2352] T=1

Tentukan perhitungan jarak *Euclidean Distance* dengan menggunakan persamaan (2.12). perhitungannya dijelaskan seperti berikut ini.

 $J_{1} = \sqrt{ (0,0261 - 0.0617)^2 + (0,0689 - 0.1236)^2 + (0,9766 - 0.8903)^2 + (0,9757 - 0.7885)^2 + (0,8641 - 0.7511)^2 + (0,1457 - 0.2352)^2 }$

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan

N

= 0,067519

$J_{2} = \sqrt{ (0,0261-0.0617)^2 + (0,0689-0.1236)^2 + (0,9766-0.8903)^2 + (0,9757-0.7885)^2 + (0,8641-0.7511)^2 + (0,1457-0.2352)^2 }$

C = 0,0441

Lakukan hal yang sama mencari jarak *eucledian* untuk bobot ke 3-12, sehingga diperoleh 12 nilai jarak seperti yang diperlihatkan berikut ini :

Tabel	4.45	Nilai	Jarak	Data	Uii
Lanci		TATTOT	ouran	Data	U JI

	jarak	Nilai	Jarak	Nilai			
	ke	Jarak	Ke-	Jarak			
	J1	0,0675	J7	2,2034			
	J2	0,0441	J8	0,0780			
	J3	2,1982	J9	0,0318			
	J4	0,0097	J10	0,7694			
	J5	0,0026	J11	0,4928			
	J6	0,8813	J12	0,0034			

Dari hasil jarak pada tabel diatas, tentukan jarak minimum. Jarak minimum yang didapatkan adalah jarak ke- 12 yaitu 0,0034. Berdasarkan itu dapat disimpulkan bahwa pengujian data uji terdeteksi sebagai kelas 12.

4.2 Perancangan Aplikasi

Pada tahapan ini dilakukan perancangan terhadap aplikasi sebelum masuk tahapan implementasi atau pengujian. Perancangan aplikasi terdiri dari perancangan struktur menu, perancangan antar muka (i*nterface*) dan perancangan *pseudocode*.

4.2.1 Perancangan Struktur menu

Pada perancangan struktur menu dilakukan penentuan menu apa saja yang akan dibutuhkan nantinya pada aplikasi. Perancangan menu dapat dilihat pada Gambar 4.6 dibawah ini.

karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Kasim Riau

UIN Suska Riau karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau Pengutipan tidak merugikan kepentingan yang wajar

Gambar 4.6 Perancangan Struktur Menu

4.2.2 Perancangan Antar Muka (Interface)

Perancangan interface ini dilakukan untuk menciptakan tampilan aplikasi yang baik. Dengan mempunyai tampilan yang baik dan mudah digunakan maka dari itu akan tercipta komunikasi yang baik dan konsisten antara aplikasi dan

1. Halaman Utama

Menu halaman utama merupakan halaman yang pertama kali muncul saat kita menjalankan aplikasi. Tampilan halaman utama dapat dilihat pada gambar 4.7 dibawah ini

Gambar 4.7 Halaman Utama

Pada halaman utama terdapat lima button, yaitu "Masukkan Data" S berfungsi untuk menampilkan halaman penambahan data, ""Mulai pelatihan" berfungsi untuk menampilkan halaman pelatihan data,"Mulai Pengujian"" berfungsi untuk menampilkan halaman pengujian data, "Perhitungan Akurasi"

Hak Cipta Dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh kanya tulis ini tanpa mencantumkan dan menyebutkan sumber

Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah

Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

berfungsi untuk menampilkan halaman perhitungan akurasi dan "halaman o tentang aplikasi" berfungsi untuk menampilkan halaman tentang aplikasi dan "Kembali" berfungsi untuk menutup aplikasi.

2. Halaman Masukkan Data

Halaman masukkan data akan muncul saat pengguna menekan button ="Masukkan Data". Perancangan halaman masukkan data ditampilkan dibawah Z oini

Gambar 4.8 Halaman Masukkan Data

Pada halaman masukkan data ini terdapat button yang memiliki fungsi yang berbeda-beda. Disana terdapat perintah masukkan daun dan user mengetikkan nama daun yang akan di input, kemudian button "Tambahkan Daun" berfungsi untuk menyimpan nama daun yang di input kan oleh user ke database. Kemudian perintah "Total Citra Per daun" bermaksud agar pengguna memasukkan jumlah data perkelas dari setiap daun. Button "proses data" berfungsi untuk menyimpan setiap data yang dimasukkan sebagai data baru ke database. Button "Mulai Pelatihan" berfungsi untuk menuju ke halaman pelatihan data. Terakhir "kembali" berfungsi untuk menampilkan halaman utama aplikasi

3. Menu Pelatihan

Riau

Halaman Pelatihan akan muncul pada saat user menekan button "Mulai Pelatiha". Perancangan halaman pelatihan ditampilkan dibawah ini.

- Dilarang mengutip sebagian atau seluruh karya tulis
- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- N Pengutipan tidak merugikan kepentingan yang wajar
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau
 - UIN Suska Riau
- - ini tanpa mencantumkan dan menyebutkan sumber

Gambar 4.9 Halaman Mulai Pelatihan

Halaman menu pelatihan ini terbagi dua yaitu ekstraksi ciri PCA dan klasifikasi LVQ3. Pertama dimulai dengan memilih tipe daun,karena dalam penelitianini terdapat dua tipe daun yaitu bagian depan dan bagian belakang daun. Langkah kedua yaitu memilih persenan antara data latih dan data uji. Misalkan memilih 80%:20% itu berarti 80% dari data yang diinputkan merupakan data latih dan 20% lagi merupakan data uji. Selanjutnya memasukkan nilai N yang berfungsi untuk mereduksi hasil ekstraksi data latih menggunakan PCA. Buttob "Mulai Proses PCA" berfungsi untuk menyimpan data hasil ekstraksi ciri PCA ke database.

Kemudian Pelatihan Klasifikasi dengan menginputkan nilai -nilai yang dibutuhkan untuk pelatihan LVQ kemudian button "Mulai Pelatihan LVQ3" berfungsi untuk menjalankan pelatihan dan menyimpan hasil pelatihan ke dalam database. Dan hasil bobot terbaik akan muncul di halaman pelatihan tersebut.

4. Menu Mulai Pengujian

Kasim Riau

Pada saat menekan button mulai pengujian, maka aplikasi akan menampilkan halaman mulaipengujian.perancangan halaman mulai pengujian adalah sebagai berikut. Syarit

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber
- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- N
- Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau

Uji Daun Depan	Uji Daun Belakang
cipt	
a 3	
BUKA FILE	BUKA FILE
Manfaat Daun	Manfaat Daun
Hasil Klasifikasi	Hasil Klasifikasi

Gambar 4.10 Halaman Mulai Pengujian

Terdapat satu button "Buka File" berfungsi untuk memanggil data citra yang akan diujikan. Setelah memilih citra yang akan diuji maka akan keluar hasil klasifikasi daun tanaman obat apakah sesuai dengan target atau tidak. Dan juga manfaat dari daun tanaman obat yang diklasifikasi tersebut,

5. Menu Perhitungan Akurasi

Pada saat button perhitungan akurasi diklik, maka aplikasi akan menampilkan halaman akurasi pengujian. perancangan halaman akurasi pengujian adalah sebagai berikut. Islamic University of Sultan Syarif Kasim Riau

Hak milik NID Suska

Hak Cipta Dilindungi Undang-Undang

- Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber
- Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah
- N Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau

Gambar 4.11 Halaman Perhitungan Akurasi

Terdapat dua button pada halaman perhitungan akurasi yaitu "Proses Akurasi"" berfungsi untuk memulai proses mencari nilai akurasi pengujian terhadap data yang akan dilakukan pengujian. sebelumnya user harus menginputkan nilainilai yang dibutuhkan pada saat proses perhitungan akurasi. Button yang kedua yaitu kembali berfungsi untuk kembali ke halaman utama.

6. Menu tentang Aplikasi

Pada saat button Tentang Aplikasi di klik, maka aplikasi akan menampilkan halama tentang aplikasi. Perancangan halaman tentang aplikasi adalah sebagai berikut.

00

b. Pengutipan tidak merugikan kepentingan yang wajar UIN Suska Riau Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan dan menyebutkan sumber

N Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin UIN Suska Riau