

BAB II

LANDASAN TEORI

Matriks

Definisi 2.1 (Howard Anton, 1987) Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. Bilangan-bilangan dalam susunan tersebut dinamakan entri dalam matriks.

Di bentuk sistem persaman linier sebagai berikut :

 $f_1(x_1, x_2, ..., x_n) = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n$ $f_2(x_1, x_2, ..., x_n) = a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n$ (2.1) $f_n(x_1, x_2, \dots, x_n) = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n$

Sistem Persamaan (2.1) dapat dibentuk sebagi berikut :

$$\begin{bmatrix} f_{1}(x_{1}, x_{2}, \dots, x_{n}) \\ f_{2}(x_{1}, x_{2}, \dots, x_{n}) \\ \vdots \\ f_{n}(x_{1}, x_{2}, \dots, x_{n}) \end{bmatrix} = \begin{bmatrix} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \\ \vdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} \end{bmatrix},
= \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}.$$
(2.2)

maka Persamaan (2.2) dapat ditulis menjadi $f(\mathbf{x}) = A\mathbf{x}$, sehingga jika di diferensialkan secara parsial diperoleh

$$\frac{\partial}{\partial \mathbf{x}}(f(\mathbf{x})) = \frac{\partial}{\partial \mathbf{x}}(A\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(x_1, x_2, \dots, x_n)}{\partial x_1} & \dots & \frac{\partial f_1(x_1, x_2, \dots, x_n)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(x_1, x_2, \dots, x_n)}{\partial x_1} & \dots & \frac{\partial f_n(x_1, x_2, \dots, x_n)}{\partial x_n} \end{bmatrix} = A.$$
(2.3)

II-1

Contoh 2.1:

Carilah $\frac{\partial}{\partial x}(\mathbf{f}(\mathbf{x}))$ untuk $f_1 = 4x_1 + 7x_2$ dan $f_2 = 5x_1 + 8x_2$ Penyelesaian:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} \\
= \begin{bmatrix} \frac{\partial}{\partial x_1} (4x_1 + 7x_2) & \frac{\partial}{\partial x_2} (4x_1 + 7x_2) \\ \frac{\partial}{\partial x_1} (5x_1 + 8x_2) & \frac{\partial}{\partial x_2} (5x_1 + 8x_2) \end{bmatrix} \\
= \begin{bmatrix} 4 & 7 \\ 5 & 8 \end{bmatrix} = A$$

Selanjutnya, Jika didapat $\mathbf{y} = [y_1 y_2 \dots y_n]^T \operatorname{dan} \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ maka berlaku

hubungan sebagai berikut:

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{y}^T \mathbf{x}) = \begin{bmatrix} \frac{\partial (\mathbf{y}^T \mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial (\mathbf{y}^T \mathbf{x})}{\partial x_n} \end{bmatrix} = \frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^T \mathbf{y}) = \begin{bmatrix} \frac{\partial (\mathbf{x}^T \mathbf{y})}{\partial x_1} \\ \vdots \\ \frac{\partial (\mathbf{x}^T \mathbf{y})}{\partial x_n} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$
(2.4)

State Slamic University of Sulfan Syarif Kasim Riau

$$\frac{\partial (\mathbf{y}^{T} \mathbf{x})}{\partial x_{n}} = \begin{bmatrix} \frac{\partial (\mathbf{y}^{T} A \mathbf{x})}{\partial x_{1}} \\ \vdots \\ \frac{\partial (\mathbf{y}^{T} A \mathbf{x})}{\partial x_{n}} \end{bmatrix} = \frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^{T} A^{T} \mathbf{y}) = \begin{bmatrix} \frac{\partial (\mathbf{x}^{T} A^{T} \mathbf{y})}{\partial x_{1}} \\ \vdots \\ \frac{\partial (\mathbf{x}^{T} A^{T} \mathbf{y})}{\partial x_{n}} \end{bmatrix} = A^{T} \mathbf{y}$$
(2.5)

Contoh 2.2:

Tentukan $\frac{\partial}{\partial \mathbf{x}} (\mathbf{y}^{T} A \mathbf{x}) = A^{T} \mathbf{y}$ dengan $A = \begin{bmatrix} 4 & 2 \\ 8 & 5 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}$ dan $\mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$

Tentukan
$$\frac{\partial}{\partial \mathbf{x}}(\mathbf{y}^T A \mathbf{x}) = A^T \mathbf{y}$$
 dengan $A = \begin{bmatrix} 4 & 2 \\ 8 & 5 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ dan $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Penyelesaian:

 $\frac{\partial}{\partial \mathbf{x}}(\mathbf{y}^T A \mathbf{x}) = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 8 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $= [y_1 \quad y_2] \begin{bmatrix} 4x_1 + 2x_2 \\ 8x_1 + 5x_2 \end{bmatrix}$ $= (4x_1 + 2x_2)y_1 + (8x_1 + 5x_2)y_2$

Sehingga,

$$\frac{\partial}{\partial x} = 4x_1y_1 + 2x_2y_1 + 8x_1y_2 + 5x_2y_2$$

$$= \begin{bmatrix} 4y_1 & + & 8y_2 \\ 2y_1 & + & 5y_2 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 8 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$= A^T y$$

Jika matriks simetri, maka:

$$\frac{\partial}{\partial x}(\mathbf{x}^T A \mathbf{x}) = 2A\mathbf{x} \tag{2.6}$$

Contoh 2.3:

Tentukan $\frac{\partial}{\partial x}(x^T A x) = 2Ax$ dengan $A = \begin{bmatrix} 4 & 8 \\ 8 & 4 \end{bmatrix}$

$$\frac{\partial}{\partial x}(x^T A x) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Tentukan
$$\frac{\partial}{\partial x}(x^TAx) = 2Ax$$
 dengan $A = \begin{bmatrix} 4 & 8 \\ 8 & 4 \end{bmatrix}$

Penyelesaian:
$$= \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ 8 & 4 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 & 4x_2 \\ 8x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 & 4x_2 \\ 8x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1(4x_1 + 8x_2) + x_2(8x_1 + 4x_2) \\ = 4x_1^2 + 8x_1x_2 + 8x_1x_2 + 4x_2^2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_2 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_2 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_1 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_1 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_1 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 \\ 2x_1 & 4x_1 & 4x_1 \end{bmatrix}$$

$$= \begin{bmatrix} 2x_1 & 4x_1 & 4x_1 & 4x_1 \\ 4x_1 & 4x_1 & 4x_1 \end{bmatrix}$$

2.2 Kestabilan Sistem Diskrit

Sebelum pembahasan kestabilan perlu didefinisikan titik ekuilibrium, sebagai berikut :

Definisi 2.2 (Olsder, 1994) Diberikan persamaan diferensial orde satu yaitu $\mathbf{x} = f(x)$ dengan nilai awal $x(0) = x_0$, sebuah vektor $\overline{\mathbf{x}}$ yang memenuhi $f(\overline{\mathbf{x}}) = 0$ disebut titik ekuilibrium.

Berdasarkan (**Ogata**, **1995**) akan diberikan defenisi untuk kasus kestabilan waktu diskrit sebagai berikut:

Teorema 2.2 (Ogata, 1995) diberikan sistem persamaan waktu diskrit:

$$x_{k+1} = A_k x_k , \qquad (2.7)$$

Dengan x_k adalah vektor *state* dan A adalah matriks non singular nxn, untuk titik ekuilibrum $\overline{x}_k = 0$ dikatakan stabil asimtotik jika terdapat matriks s_k simetri dan positif definit yang memenuhi:

$$A_k^T s_k A_k - s_k = -Q_k, (2.8)$$

Dengan matriks Q adalah matriks simetri dan definit positif.

Selanjutnya untuk melengkapi pembahasan pada bagian ini, diberikan contoh sebagai berikut:

Contoh 2.4

Tentukan kestabilan dari persamaan sistem berikut:

$$\begin{bmatrix} x_{k+1} \\ x_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1(k)} \\ x_{2(k)} \end{bmatrix}$$

Penyelesaian:

Untuk menentukan kestabilan dari persamaan sistem di atas, dimisalkan matriks Q Adalah matriks identitas maka dapat dilakukan langkah sebgai berikut:

$$A_k^T s_k A_k - s_k = -Q_k,$$

$$\begin{bmatrix} 0 & -1 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} s_{11} & s_{12} \\ s_{12} & s_{22} \end{bmatrix} \begin{bmatrix} 0 & 0.5 \\ -1 & 1 \end{bmatrix} - \begin{bmatrix} s_{11} & s_{12} \\ s_{12} & s_{22} \end{bmatrix} = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} s_{22} - s_{11} & -1.5s_{12} - s_{22} \\ -1.5s_{12} - s_{22} & 0.25s_{11} + s_{12} \end{bmatrix} = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Berdasarkan matriks di atas, diperoleh 3 persamaan sebagai berikut:

 $s_{22} - s_{11} = -1$

$$-1.5s_{12} - s_{22} = 0$$

 $0.25s_{11} + s_{12} = -1$

Sehingga kita dapatkan nilai $s_{11} = 4$, $s_{12} = -2$, $s_{22} = 3$ dan dapat dibentuk menjadi:

$$S = \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$$

 $\lambda^2 - 7\lambda + 8 = 0$

Kemudian dibuktikan matriks S adalah matrik definit positif sebagai berikut:

$$\det (\lambda I - S) = 0$$

$$\det \left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix} \right) = 0$$

$$\det \begin{bmatrix} \lambda - 4 & 2 \\ 2 & \lambda - 3 \end{bmatrix} = 0$$

$$(\lambda - 4)(\lambda - 3) - 4 = 0$$

Oleh karena itu, diperoleh nilai eigennya

$$\lambda_1 = 1.44 \text{ dan } \lambda_2 = 5.56$$

Dari matriks di atas didapat: $\lambda_1=1.44$, dan $\lambda_2=5.56$, karena $\lambda_i>0$, i=1.2maka dapat disimpulkan matriks di atas adalah matriks S definit positif. Maka persamaan pada contoh ini stabil asimtotik.

2.3 Kendali Optimal Waktu Diskrit

Selanjutnya pada subbab yang ketiga ini, akan dibahas tentang kendali optimal waktu diskrit, pertama akan dibahas terlebih dahulu tentang masalah umum kendali optimal waktu diskrit.

Masalah Umum Kendali Optimal Waktu Diskrit

diberikan persamaan fungsi kendali secara umum masalah kendali optimal waktu diskrit sistem dinamis sebagai berikut:

$$\boldsymbol{x}_{k+1} = \boldsymbol{f}^k (\boldsymbol{x}_{k,} \boldsymbol{u}_k), \tag{2.9}$$

dengan kondisi awal x_0 , dengan x_k adalah vektor berukuran n dan kontrol input u_k adalah vektor berukuran m.

Selajutnya diketahui fungsi tujuan sebagai berikut:

$J = \emptyset(N, \mathbf{x}_n) + \sum_{k=1}^{N-1} (\mathbf{x}_k, \mathbf{u}_k)$ (2.10)

Kemudian, untuk menentukan solusi dari masalah umum kendali optimal waktu diskrit diperlukan persamaan-persamaan yang berfungsi untuk meminimalkan fungsi objektif, adapun persamaan itu adalah sebagai berikut:

Persamaan Hamilton:
$$\mathbf{H} = L^k(\mathbf{x}_k, \mathbf{u}_k) + \lambda_{k+1}^T \mathbf{f}^k(\mathbf{x}_k, \mathbf{u}_k)$$
 (2.11)

Persamaan state :
$$\mathbf{x}_{k+1} = \frac{\partial H}{\partial \lambda_{k+1}}, \ k = i, \dots, N-1$$
 (2.12)

Persamaan *kostate* :
$$\lambda_k = \frac{\partial H}{\partial x_k}$$
, $k = i, \dots, N-1$ (2.13)

Persamaan *stationer*:
$$0 = \frac{\partial H}{\partial u_k}, k = i, \dots, N-1$$
 (2.14)

2.3.2 Kendali Optimal Waktu Diskrit Lingkar Tertutup

Berikutnya bagian ini dibahas masalah kendali lingkar tertutup linier kuadratik, didefinisikan persamaan linier sebagai berikut:

$$\boldsymbol{x}_{k+1} = A_k \boldsymbol{x}_k + B_k \boldsymbol{u}_k \,, \tag{2.15}$$

dengan $x_k \in \mathbb{R}^m$, fungsi tujuan yang terkait adalah fungsi kuadratik sebagai berikut:

$$J = \frac{1}{2} x_N^T S_N x_N + \frac{1}{2} \sum_{k=1}^{N-1} (x_k^T Q_k x_k + \boldsymbol{u}_k^T R_k \boldsymbol{u}_k),$$
 (2.16)

Pada persamaan (2.15) diasumsikan Q_k , R_k , dan S_N adalah matrik simetri semi definit positif dan $R_k \neq 0$ untuk semua k.

Persamaan Hamilton :
$$\mathbf{H} = \frac{1}{2} (\mathbf{x}^T Q_k \mathbf{x}_k + \mathbf{u}_k^T R_k \mathbf{u}_k) + \lambda_{k+1}^T (A_k \mathbf{x}_k + B_k \mathbf{u}_k),$$

$$(2.17)$$

Kemudian persamaan (2.16) menghasilkan persamaan state dan costate

Persamaan state :
$$x_{k+1} = \frac{\partial H}{\partial \lambda_{k+1}} = A_k x_k + B_k u_k$$
, (2.18)

Persamaan costate :
$$\lambda_k = \frac{\partial H}{\partial x_k} = Q_k x_k + A_k^T \lambda_{k+1},$$
 (2.19)

0

Persamaan stationer: $0 = \frac{\partial H}{\partial u_k} = R_k u_k + B_k^T \lambda_{k+1}$ (2.20)

Menurut persamaan (2.20) diperoleh:

$$u_k = -R_k^{-1} B_k^T \lambda_{k+1} (2.21)$$

Kemudian persamaan (2.21) substitusikan ke persamaan (2.18):

$$x_{k+1} = A_k x_k - B_k R_k^{-1} B_k^T \lambda_{k+1}$$
 (2.22)

Selanjutnya diasumsikan:

$$\lambda_k = S_k x_k \,, \tag{2.23}$$

Gunakan persamaan (2.23) ke dalam (2.22) untuk mendapatkan persamaan:

$$x_{k+1} = A_k x_k - B_k R_k^{-1} B_k^T S_{k+1} x_{k+1}, (2.24)$$

Pemecahan untuk x_{k+1} menghasilkan:

$$x_{k+1} = (1 + B_k R_k^{-1} B_k^T S_{k+1})^{-1} A_k x_k, (2.25)$$

Substitusikan persamaan (2.23) dengan persamaan costate (2.19):

$$S_k x_k = Q_k x_k + A_k^T S_{k+1} x_{k+1} , (2.26)$$

Substitusikan persamaan (2.25) dengan persamaan (2.26):

$$S_k = A_k^T S_{k+1} (I + B_k R_k^{-1} B_k^T S_{k+1})^{-1} A_k + Q_k , \qquad (2.27)$$

Gunakan inversi matriks:

$$S_k = A_k^T [S_{k+1} - S_{k+1} B_k (B_k^T S_{k+1} B_k + R_k)^{-1} B_k^T S_{k+1}] A_k + Q_k,$$
 (2.28)

Kemudian persamaan (2.28) dapat dibentuk:

$$S_k = A_k^T (S_{k+1}^{-1} + B_k R_k^{-1} B_k^T)^{-1} A_k + Q_k, (2.29)$$

Persamaan (2.29) merupakan persamaan Riccati. Persamaan Riccati tersebut akan dicari solusi S_k kemudian dari persamaan (2.19) dapat dibentuk persamaan sebagai berikut:

$$\lambda_{k+1} = (A_k^T)^{-1} (\lambda_k - Q_k x_k) , \qquad (2.30)$$

Berdasarkan persamaan (2.23) maka persamaan (2.30) menjadi:

$$\lambda_{k+1} = (A_k^T)^{-1} (S_k x_k - Q_k x_k) ,$$

= $(A_k^T)^{-1} (S_k - Q_k) x_k ,$ (2.31)

Kemudian substitusikan persamaan (2.31) ke persamaan (2.21) menjadi:

$$\mathbf{u}_{k} = -R_{k}^{-1} B_{k}^{T} \lambda_{k+1}$$

$$= -R_{k}^{-1} B_{k}^{T} (A_{k}^{T})^{-1} (S_{k} - Q_{k}) \mathbf{x}_{k} , \qquad (2.32)$$

Persamaan (2.32) dapat disederhanakan menjadi:

Hak Cipta Dilindungi Undang-Undang

 $\boldsymbol{u}_k = -K_k \boldsymbol{x}_k \; ,$

dimana:

$$K_k = -R_k^{-1} B_k^T (A_k^T)^{-1} (S_k - Q_k) x_k$$

2.4 Bentuk Kuadratik

Bagian ini akan dijelaskan bentuk umum kuadratik suatu matriks yaitu:

$$\mathbf{x}^{T} A \mathbf{x} \operatorname{dengan} \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 (2.33)

dengan A sebagai matriks ukuran nxn. Kemudian dari persamaan (2.33) diuraikan menjadi persamaan kuadratik yang didapat:

$$c_{11}x_1^2 + c_{12}x_1x_2 + c_{13}x_1x_3 + \dots + c_{(n-1)}x_{n-1}x_1 + c_{nn}x_n^2,$$
 (2.34)

persamaan (2.33) merupakan bentuk persamaan kuadratik dengan n variabel $x_1, x_2, ..., x_n$ untuk $i \le j, j \le n$ dan $c_{ij} \in \mathbb{R}$. Selanjutnya persamaan (2.34) dapat dibentuk ke notasi sigma sebagai berikut:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j$$

Menurut (**Lewis, 1995**) sifat definit dari persamaan kuadratik (2.33) dapat diperoleh dengan menghitung nilai eigen dari matriks A. Jika A matriks simetri berukuran nxn dan $\lambda_1, \lambda_2, ..., \lambda_n$ merupakan nilai eigen dari matriks A sehingga bentuk kuadratik x^TAx dapat memenuhi:

- 1. Definit positif jika dan hanya jika $\lambda_i > 0$ untuk semua i
- 2. Semi definit positif jika dan hanya jika $\lambda_i \geq 0$ untuk semua i
- 3. Definit negatif jika dan hanya jika $\lambda_i < 0$ untuk semua i
- 4. Semi definit negatif jika dan hanya jika $\lambda_i \leq 0$ untuk semua i.
- Selanjutnya untuk memahami bentuk diatas maka diberikan contoh sebagai berikut:

Contoh 2.5

Tentukanlah definit dari matriks $A = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$.

nonvolos

penyelesaian:

$$Det (\lambda I - A) = 0$$

$$Det (\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}) = 0$$

$$\lambda^2 - 6\lambda + 8 = 0$$

$$\lambda_1 = 2, \lambda_2 = 4$$

Jadi matriks A disebut matriks definit positif.

Contoh 2.6

Tentukanlah definit dari matriks $A = \begin{bmatrix} -5 & 0 \\ 0 & -4 \end{bmatrix}$.

penyelesaian:

$$Det (\lambda I - A) = 0$$

$$Det \left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -5 & 0 \\ 0 & -4 \end{bmatrix} \right) = 0$$

$$\lambda^2 + 9\lambda + 20 = 0$$

$$(\lambda + 4)(\lambda + 5) = 0$$

$$\lambda_i = -4, \lambda_2 = -5$$

Jadi matriks A disebut matriks definit negatif.

2.5 Representasi State Untuk Sistem Waktu Diskrit

Menurut **Ogata** (**1995**) diberikan persamaan karakteristik dinamik diskrit sebagai berikut:

$$y(k) + a_1 y(k-1) + a_2 y(k-2) + \dots + a_n y(k-n) = b_0 u(k) + b_1 u(k-1) + \dots + b_n u(k-n)$$
(2.35)

dimana u(k) sebagai input dan y(k) sebagai output dari sebuah sistem pada k. Perhatikan koefisien a_i untuk $i=1,2,\cdots n$ dan b_j untuk $j=0,1,2,\cdots n$. Kemudian didefenisikan transformasi z sebagai berikut:

$$y(k) = y(z)$$
 dan $y(k-i) = z^{-i}y(k)$ dan $u(k) = u(z)$ dan $u(k-i) = z^{-i}u(z)$ maka persamaan (2.35) menjadi:

$$y(z) + a_1 z^{-1} y(z) + \dots + a_n z^{-n} y(z) = b_0 u(z) + b_1 z^{-1} u(z) + \dots + b_n z^{-n} u(z)$$
$$y(z) (1 + a_1 z^{-1} + \dots + a_n z^{-n}) = u(z) (b_0 + b_1 z^{-1} + \dots + b_n z^{-n})$$

atau

Hak

Hak Cipta Dilindungi Undang-Undang

 $\frac{y(z)}{u(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_n z^{-n}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}}$

$$\frac{y(z)}{u(z)} = \frac{b_0 z^n + b_1 z^{n-1} + \dots + b_n}{z^n + a_1 z^{n-1} + \dots + a_n}$$
(2.36)

Persamaan (2.36) dapat direpresentasikan kebentuk kanonik terkontrol yaitu:

$$\begin{bmatrix} x_{1}(k+1) \\ x_{2}(k+1) \\ \vdots \\ x_{n-1}(k+1) \\ x_{n}(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1} \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \\ \vdots \\ x_{n-1}(k) \\ x_{n}(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u(k)$$

$$(2.37)$$

Contoh 2.7

Diberikan sebuah fungsi pulse transfer

$$\frac{y(z)}{u(z)} = \frac{z+1}{z^2 + 1.3z + 0.4}$$

Representasika fungsi pulse transfer menjadi bentuk kanonik terkontrol

Penyelesaian:

Berdasarkan persamaan (2.35) dapat direpresentasikan kebentuk kanonik terkontrol sebagai berikut:

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.4 & -1.3 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$